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Abstract:-
This paper is concerned with the parameter estimation problem for a class of diffusion process from discrete observations. 
The approximate likelihood function is given by using a Riemann sum and an Itˆo sum to approximate the integrals in the 
continuous-time likelihood function. The consistency of the maximum likelihood estimator and the asymptotic normality 
of the error of estimation are proved by applying the martingale moment inequality, Holder’s inequality, Chebyshev 
inequality, B-D-G inequality and uniform ergodic theorem. The results are applied to the hyperbolic process.
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I. INTRODUCTION
Stochastic phenomenon occurs in many fields such as biology and medical science and stochastic models have come to 
play an important role in many branches of science and industry where more and more people have encountered stochastic 
process. Stochastic processes are of great importance on studying the stochastic phenomena and have been widely 
employed for model building in statistical physics, management decisions, economic mathematics, computer science, etc. 
Recently, stochastic processes, especially diffusion processes defined by stochastic differential equations, have been 
widely used to describe the price dynamics of a financial asset such as interest rate, discount bonds and futures, (see e.g. 
[15, 17]). The Black-Scholes option pricing model described by a geometric Brownian motion (see e.g. [5]) and the 
Vasicek and Cox-Ingersoll-Ross models developed based on two specific mean-reverting diffusion processes (see e.g. 
[7,8,20]) are widely used models in economic cases. Therefore, diffusion processes are the basic stochastic modeling 
instruments in the modern financial theory and applications of diffusion processes have been more and more popular. 
However, in the actual systems described by the stochastic models, part or all of the parameters are always unknown, but 
the observed values are known. Hence, the unknown parameters are needed to be estimated based on observations. In 
terms of the specific stochastic models, it is necessary to estimate the parameters in these models to obtain proper structures 
no matter what methods are used.
In earlier works, some methods have been considered to estimate the parameters in diffusion processes based on 
continuous-time observations. For example, maximum likelihood estimation for scalar parameters
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SUBMITTED
And vector parameters in nonlinear stochastic differential equations (see e.g. [2,16,21,22]), Bayes estimation for a certain 
class of diffusion processes (see e.g. [4]) and other methods such as minimum contrast method (see e.g. [14]), M-
estimation method (see e.g. [23,24]) and sequential estimation method (see e.g. [9]). However, in fact, it is impossible to 
observe a process continuously in time. Therefore, parametric inference based on sampled data is important in dealing 
with practical problems. Some methods have been applied to solve the parameter estimation problem for the diffusion 
processes based on discrete observations. For example, Kessler [11] obtained the contrast function by discretizing the 
process based on Euler method and considering Gaussian approximation to the transition density, Yoshida [25] and Bibby 
[3] derived the approximate likelihood function and martingale estimation function respectively by using Itˆo sum and 
Riemann sum to approximate the integrals in the continuous-time likelihood function, A¨ıt-Sahalia [1] and Chang [6] 
obtained the approximate transition densities based on series expansions, Uchida [19] considered adaptive maximum 
likelihood type estimation of both drift and diffusion parameters for an ergodic diffusion process. When the process is 
observed partially, Kristensen [12] and Gu [10] applied extended Kalman filter and local linearization filter respectively 
to estimate both the states and parameters.
In our work, parameter estimation problem for a class of ergodic diffusion process is studied from discrete observations. 
Although the problem has been discussed in some literatures such as [13] and [18], the asymptotic normality of the error 
of estimation has not been discussed. In this paper, the process, conditions and methods are different from that in [13] and 
[18]. Firstly, the approximate likelihood function is given by using Itˆo sum and Riemann sum to replace the integrals in 
the continuous-time likelihood function. Then, the limitation of the approximate likelihood function is obtained and this 
limitation is assumed to attain the maximum at the true parameter value. Hence, the consistency of the maximum likelihood 
estimator is proved. The asymptotic normality of the error of estimation is proved by applying the Holder’s inequality, B-
D-G inequality, Chebyshev inequality, dominated convergence theorem and uniform ergodic theorem. Finally, the 
Ornstein-Uhlenbeck process is introduced as an example to verify the results.
This paper is organized as follows. In Section 2 some assumptions and the approximate likelihood function are given. 
Some lemmas and the main results are given in Section 3. In this section, the consistency of the maximum likelihood 
estimator and the asymptotic normality of the error of estimation are proved. In Section 4 the hyperbolic process is 
introduced as an example. The conclusion is given in Section 5.

II. Problem Formulation and Preliminaries
We study a class of one-dimensional stationary ergodic diffusion processes described by the following stochastic 
differential equation:

(1)
where θ ∈ Θ a compact subset in R is an unknown one-dimensional parameter and (Wt,t ≥ 0) is a standard Wiener process 
defined on a complete probability space (Ω,F,P). The drift and the diffusion coefficient are supposed to be known and do 
not depend on the time t.
The process is observed at discrete equidistant times ti = i∆,1 ≤ i ≤ n,∆ > 0 and the parameter is estimated based on the 
discrete data. The approximate likelihood function is given by using a Riemann sum and an Itˆo sum to approximate the 
integrals in the continuous-time likelihood function. From now on, we will work under the assumptions as follows:
Assumption 1: |f(x,θ)| + |g(x)| ≤ K1(1 + |x|) and |f(x,θ) − f(y,θ)| + |g(x) − g(y)| ≤ K2|x − y| where K1 and K2 are constants and 
x,y ∈ R.
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Assumption 2: |f0(x,θ) − f0(y,θ)| ≤ K3|x − y| where f0 denotes the first differential with respect to θ, K3 is a constant and x,y 
∈ R.
Assumption 3: E|X0|p < ∞ and infx g2(x) > 0 for each p > 0 .
Assumption 4: |f0(x,s)| < h(x) and |f00(x,s)| < m(x) for all s ∈ I(θ) where I(θ) is a closed interval containing θ and f00 denotes 

the second differential with respect to θ. Moreover, and ∞.

Assumption 5: The function ] has its unique maximum at the true parameter value
θ0.

Let Pθ
t be the probability measure generated by the process {Xs,0 ≤ s ≤ t} and PW

t be the probability measure induced 
by the standard Wiener process. The continuous-time log-likelihood function has the following expression

(2)
Then, the approximate likelihood function can be written as

. (3)
III. Main Results and Proofs

The following lemmas are useful to derive our results.
Lemma 1: Assume that {Xt} is a solution of the stochastic differential equation 1 and Assumptions 1-3 hold. Then, for 

any integer n ≥ 1 and 0 ≤ s ≤ t,
E|Xt − Xs|2p = O(|t − s|p).

Proof: Suppose θ0 is the true parameter value, by applying Holder’s inequality, it follows that
|Xt − Xs|2p

=

≤

Since

≤

, (4)
from Assumption 3 together with the stationarity of the process, one has

. (5)
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From B-D-G inequality, it can be checked that

, (6)
where Cp is a positive constant depending 

only on p. Moreover,
(7)

it follows that

. (8)
From the above analysis, one has

E|Xt − Xs|2p = O(|t − s|p). (9)

The proof is complete.
Lemma 2: Under Assumptions 1-3, when ∆ → 0, one has

.
Proof: By applying Holder’s inequality, it can be checked that

From Lemma 1 together with Assumptions 1 and 3, one has

E[f(Xs,θ0) − f(Xti−1,θ0)]2 = O(∆), (10)

and is bounded.
From the above analysis, we have

, (11)
as ∆ → 0.

The proof is complete.
Lemma 3: Under Assumptions 1-3, we have

,
as ∆ → 0.

Proof: From the Holder’s inequality, Assumption 1 together with the stationarity of the process, one has
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where K and H are constants.
According to the above analysis together with Lemma 1, it follows that

,
as ∆ → 0.
The proof is complete.
Remark 1: By employing the Holder’s inequality, B-D-G inequality and the stationarity of the process, the above lemmas 
have been proved. These lemmas paly a key role in the proof of the following main results. Moreover, it is easy to check 
that when f = f0, the results in Lemma 2 and Lemma 3 are correct as well.
In the following theorem, the consistency in probability of the maximum likelihood estimator is proved by applying 
martingale moment inequality, Chebyshev inequality, uniform ergodic theorem and the results of Lemmas 1-3.
Theorem 1: When ∆ → 0, n → ∞ and n∆ → ∞,

P
θb0 → θ0.

Proof: According to the expression of the approximate likelihood function and equation (1), it follows that

Then, we have

From the martingale moment inequality, it can be checked that

where C and C1 are constants.
By applying Chebyshev inequality, it can be obtained that

(13)
when ∆ → 0, n → ∞ and n∆ → ∞.
From Lemmas 2-3 together with the uniform ergodic theorem (see e.g. [16]), one has
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(14)
when ∆ → 0, n → ∞ and n∆ → ∞.
Hence, it leads to the relation that

(15)
when ∆ → 0, n → ∞ and n∆ → ∞.
From Assumption 5, it is easy to check that

,(16)
when ∆ → 0, n → ∞ and n∆ → ∞.
The proof is complete.
In the following theorem, the asymptotic normality of the error of estimation is proved by employing martingale moment 
inequality, Chebyshev inequality, uniform ergodic theorem and the dominated convergence theorem.

Theorem 2: When ∆ 0 and

Proof: Expanding ) about θb0, it follows that

,(17)

where θe is between and θ0.

In view of Theorem 1, it is known that ) = 0, then

.(18)
Since

we have

From the same method used in Theorem 1, it is easy to check that

(19)
By applying the results of Lemmas 2-3 and the uniform ergodic theorem, it follows that
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(20)
and

(21)
we assume that

Therefore, we have

(22)

According to the expression of ), it can be obtained that

Then, by employing the martingale moment inequality, Chebyshev inequality, the uniform ergodic theorem and the 
dominated convergence theorem, it follows that

. (23)
Hence, it can be obtained that

. (24)
Since

it follows that

.
As
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it is easy to check that is bounded.
From the Lemma 1 and Assumption 1, we have

Then, it follows that E[f(Xs,θ0) − f(Xti−1,θ0)]2 = O(∆). (25)

(26)

when ∆ 0 and n∆ → ∞ as n → ∞.
By applying the Chebyshev inequality, it can be obtained that

.(27)
It is obviously that

.(28)
Hence, we have

,(29)

when ∆ 0 and n∆ → ∞ as n → ∞.
From the above analysis, it can be checked that

,(30)

when ∆ 0 and n∆ → ∞ as n → ∞.
The proof is complete.
Remark 2: The consistency of the maximum likelihood estimator and the asymptotic normality of the error of estimation 
for a class of stationary ergodic diffusion processes have been proved based on discrete observations. The Lemmas 1-3 
are of great importance for obtaining the main results.

IV. Example
Consider the one-dimensional hyperbolic process described by the following stochastic differential equation:

(31)
where θ < 0,σ > 0, uθ is the invariant measure.
Firstly, it is easy to verify that this process is a stationary ergodic diffusion process.
Then, the continuous-time log likelihood function has the following expression

(32)
Hence, the approximate likelihood function is written as

.(33)
We obtain the expression of the maximum likelihood estimator

(34)

Since 1 and )] attains the unique maximum at θ = θ0, it is easy to 
check that the coefficients of hyperbolic process satisfy the Assumptions 1-5.

Therefore, when ∆ → 0, n → ∞ and n∆ → ∞,

.(35)

When ∆ 0 and n∆ → ∞ as n → ∞,

.(36)
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Conclusion
The current work concerns the maximum likelihood estimation of the drift parameter for a class of stationary ergodic
diffusion process. The consistency of the maximum likelihood estimator has been proved by applying martingale moment 
inequality, Chebyshev inequality and uniform ergodic theorem. The asymptotic normality of the error of estimation has 
been proved by employing the Holder’s inequality, B-D-G inequality, Chebyshev inequality, dominated convergence 
theorem and uniform ergodic theorem. hyperbolic process process has been introduced to verify the results. In practice, it 
is impossible to observe a process continuously over any given time period. Therefore, statistical inference based on 
sampled data is of major importance in dealing with practical problems. Further topics will include the multiparameter 
estimation for the diffusion processes from discrete observation.
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