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Abstract:-
This paper introduces a new distribution named Exponential Modified Weibull logistic distribution. This distribution 
generalizes the following distributions: (1) Linear Failure Rate Logistic Distribution, (2) Weibull Logistic Distribution, 
(3) Rayleigh Logistic Distribution, (4) Exponential Logistic Distribution, where the failure rate, Weibull, Rayleigh and 
exponential distributions are the distributions most used for analyzing lifetime data. The properties of the new distribution 
are derived that include expressions for the moment, characteristic function and quantile function. The estimation of 
model parameters are performed by the method of maximum likelihood and hence evaluation of the performance of 
maximum likelihood estimation using simulation. 
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1. INTRODUCTION  
In this paper we introduce a generalization of the Logistic distribution via the modified Weibull distribution and the 
exponential generator.This leads to  the Exponential Modified Weibull Lodistic distribution (EMWL) using the 
exponential generator applied to the odd ratio ̅�(�) ̅̅1̅̅̅,̅ where [̅� ̅(̅�̅ ̅)̅ = 1 − �(�)] such as the exponential Pareto distribution 
by AL-Kadim and Boshi (2013), exponential Lomax distribution by Bassiouny et al. (2015).  The Weibull distribution is 
an important and popular distribution for modeling lifetime data. Recently, new classes of distributions were based on 
modifications of the Weibull distribution to provide a good fit to data sets. The two-parameter flexible Weibull extension 
was discusse d by Bebbington et al.  (2007). Zhang and Xie (2011) studied the characteristics and application of the 
truncated Weibull distribution. Xie et al. (2002) proposed a three-parameter modified Weibull extension. The modified 
Weibull distribution was introduced by Lai et al. (2003).  Recent studies of the modified Weibull include Jiang et al. 
(2010), Soliman et al. (2012) and Upadhyaya and Gupta (2010). Among the four-parameter distributions, the additive 
Weibull distribution of Xie and Lai (1996) with cdf 

(�: �, �, �) = 1 − �−���−��� � 0,

The Modified Weibull distribution that we use in our article of Sarhan and Zaindin (2009) can be derived from the additive 
Weibull distribution by setting � = 1. The article is outlined as follows. In Section 2 we introduce a new four-parameter 
distribution function called as Exponential Modified Weibull Logistic distribution with parameters �, �, � ��� � and it 
will be denoted as EMWL (�, �, �, �) and provide plots of density function (pdf) and cumulative distribution function 
(cdf), along with the hazard and survival function. It is observed that the EMWL (�, �, �, �) is a unimodal pdf and it has 
increasing hazard functions. Section 3 introduces some properties of the EMWL distribution as well as a complete 
discussion in deducing an implicit form for the Quantile function, numerical values for mode and explicit form for the 
characteristic function and moments followed by the deduction of Renyi and Shannon entropies. In Section 4 we derive 
the maximum likelihood estimators of the unknown parameters of the EMWL distribution. We present, in Section 5, a 
simulation study, followed, in Section 6, by an application to real data to illustrate the importance of the EMWL 
distribution. 

2. The Exponential Modified Weibull Logistic Distribution (EMWL)
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Figure (1). The pdf of the EMWL distribution for different values of the parameters.

Figure (2). The cdf of the EMWL distribution for different values of the parameters.

Figure (3): The hazard rate of the EMWL distribution for selected values of the parameters.

Let X be a random variable with density function (2), we write �~�� (�; �, �, �, �) Figure (1) shows the diverse shape 
of the EMWL pdf with different choice of parameters that include some well-known distributions. As the random variable
� → ∞ �� − ∞ the density of the EMWL distribution tends to zero. Figure (3) illustrates some possible shapes of the
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instantaneous failure rate function for some selected choices of parameters for the EMWL model. A characteristic of the 
EMWL distribution shows that the distribution has increasing hazard rate function for all choice of parameters. The 
EMWL distribution contains several well-known distributions as special cases when its parameters change. Table 1 
demonstrates the sub-models of the EMWL distribution.

Table (1): Sub-models of the Exponential Modified Weibull Logistic distribution 

Distribution Ө a B Λ 

The Linear Failure Rate Logistic Distribution (LFRL) 
The Weibull Logistic Distribution (WL) 
The Rayleigh Logistic Distribution (RL) 
The Exponential Logistic Distribution (EL) 
The Exponential Logistic Distribution (EL) 

-
0 
0 
-
-

-
-
-
0 
-

2 

- 2 

- 1 

-
-
-
-
-

Section 3 is devoted for studying statistical properties of ��(�, �, �, �) such as a complete discussion in deducing an 
implicit form for the Quantile function, numerical values for mode at different values of parameters and explicit expression 
for the characteristic function and ��ℎ moment followed by the deduction of Renyi and Shannon entropies

3. Properties of the EMWL distribution  
3.1. uth Quantile
Theorem 1: 
Let X be a random variable following ��(�, �, �, �) distribution and let  uÎ (0,1).  A value of x such that F(x)=u is 
called a quantile of order u for the distribution. A quantile of order u is the real solution of the following equation 
Log [1 − �] + �(1 + ���) + �(1 + ���)� = 0                                                  

Proof: 
Since (�) is continuous and strictly increasing, then the quantile function 
� = �−1 (�), � ∈ (0, 1) can be straightforward computed by inverting (1) to obtain  
u=1 − �− (1+���) −�(1+���)� 1-u=�−�(1+���)−�(1+���)�

Log (1 − �) = − � (1+���) − � (1 + ���) �

Therefore, an approximate Quantile function of order u of the EMWL distribution is the real solution of the equation in 
(4). 

Equation (4) has no closed form solution in x, so we have to use a numerical tequnique .  
Can use (4), to derive the following special cases: 
(i) The u-th quantile of the LFRL(�, �) distribution, by setting b=2, as 

1
� = log [(−� 1] 

� 2�
(ii) The u-th quantile of the WL(�, �) distribution, by setting � =0, as 
� = 1 −1 1⁄� − 1] log [(log (1 − �)) 

� �
(iii) The u-th quantile of the RL(�) distribution, by setting b=2 and � =0, as 

� �)) − 1] 
(iv) The u-th quantile of the EL(�) distribution, by setting � =0, as 

Put u=0.5 in equation (4) we get the median of EMWL (�, �, �, �).
The random sample can also be easily generated from (4) by taking U as a uniform random variable in (0, 1). 

3.2. Mode 
Mode is one of the most important characteristic features for the distribution. The mode of the ���� (�, �, �, �,) is 
deduced by differentiating the pdf (1).  
 

��(�; �, �, �, �, �, �)

��

=
1

�
 log [√(

−1

� 
log (1−
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= �2��−��−� [��(� − 1)���−2 + [� + �����−1][1 − �(� + �����−1)]]
Where
A=�� & � = 1 + �.
Since A, B >0, then 
[(� − 1) ���−2 + [� + �����−1] [1 − �(� + �����−1)]] = 0
But we cannot obtain an explicit form so we calculate the mode numerically for different values of parameters 

Table (2): Mode for some chosen different values of parameters.

Parameters Mode 

� = 0.03   � = 0.02   � = 0.5     � = 0.1   4.59943130379

� = 0.5   � = 0.5   � = 0.1    � = 1   −0.4120557810

� = 0.5   � = 0.4   � = 0.3     � = 0.3   2.704684469945

� = 2.5   � = 0.4   � = 0.03     � = 0.03   1.2206998906607

� = 1   � = 1.5   � = 0.6      � = 1  −1.5545128973

� = 0.5   � = 7   � = 0.3     � = 1   −5.7842349057

3.3. Characteristic Function
In this subsection, we derive the characteristic function (cf) of EMWL distribution.  
Theorem 2:

Proof: 
We have the (cf) of the EMWL distribution as follows   Φx(ρ) = �(����) =
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By integrating the above equation we obtain the cf of the EMWL(x; �, �, �, �) distribution given by (5). We study the 
following cases. 

(i) When  � = 0,   � > 0 , then 

Theorem 3: 
If X follows the EMWL(x; �, �, �), then the rth moment of X, μr, is given as follows 

We have the rth moment of the EMWL distribution as follows
μr = �(��)

Again setting � = ���and using the expansion (*), we obtain
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4. Maximum likelihood estimation
Here, we consider the maximum likelihood estimators (MLE) of the EMWL (�, �, �, �) distribution given in (2). Let 
X (X1, X2, Xn) be a random sample of size n from this distribution. The log-likelihood function can be written as follows 

Respectively, by taking the partial derivatives of the log- likelihood function with respect a, b, λ and �, then equating it 
To zero, we obtain the estimating equations
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The MLE can be determined numerically from the solution of nonlinear system of equations, subsequently; these solutions 
will yield the MLE estimators � ̂, � ̂, �̂and � ̂. We required the observed information matrix for the interval estimation and 
hypothesis testing. For the four parameters EMWL distribution all the second order derivatives exist. Thus we have the 
observed information matrix as follows 

For interval estimation and hypothesis tests on the model parameters, we require the information matrix. The Fisher 
information matrix �−1 = (�), � = (�, �, �, �).

Where Kii denotes the ith diagonal element of �−1 = (��̂�, �̂��, � ̂��, �̂��)� for I = 1, 2, 3, 4 and z /2 is the (1 /2 ) of the 
standard normal distribution. 
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5. Simulation Study
We conducted Mont Carlo simulation studies to assess the finite sample behavior of the EMWL (�, �, �, �) all results 
were obtained from 1000 Mont Carlo replication simulations. The EMWL random number generation was performed 
using the inversion method. In each replication, random sample of size n is drawn from the EMWl (�, �, �, �) distribution 
and the maximum likelihood estimates (MLEs) of the parameters were obtained. The mean, variance, bias and mean 
squared error (MSE) for each parameter was computed under different sample size n=10, 25, 75, 100, and 200. 

Table (3): Mean estimates, bias, variance and mean square errors of the (MLEs) when � = �, b = �, � = �. ��, Ө 
= �. ���.

N parameter Mean Variance Bias MSE 
10 a b 

λ 
Ө

4.606577
5 
1.865921
9 
0.302560
2 
0.104531
7 

8.284913655 
11.7264116 
0.038825932 

0.002317102 

2.6065 7 -
1.1341 

0.2725
6 

0.0925
3 

15.079
2 
13.012
5 
0.1131
1 
0.0108  8 

25 a b 
λ 
Ө

3.66414 
2.3480497
5 
0.1077023
8 
0.0830312  5 

1.275658876 
6.317470551 

0.018200814 
0.005815521 

1.6641
4  -

0.6519  -0.0777
0.0710

3

4.0450208 6.7425096 
0.0242384 

0.0108609 

75 a 
b 
λ 
Ө

4.4440625 
4.7534925 
0.01502036
8 
0.03985742
3 

0.107298029 
0.02655224 
0.0000278341 
0.000318574 

2.4440625 
1.7534925 

-0.01497963
0.02973075 

6.0807395330.532723 

3.1012881883.351777 

0.000252223-0. 079 
0.001202491-1. 

365 

100 a 
b 
λ 
Ө

4.5057575 
4.8892675 
0.01700222
5 
0.03949815 

0.085169826 
0.029718544 
0.000018083 
0.0000843884 

2.5057575 
1.8892675 
-
0.01299777 
0.02749815 

6.363990475 
3.59905023 
0.000187025 
0.000840537 

200 a 
b 
λ 
Ө

3.5125975 
2.63189 
0.01318597
5 
0.01945587 

0.052888346 
0.010677358 
0.0000058813
5 
0.0000259771 

1.5125975 
-0.36811 
-
0.01681402 
0.00745587 

2.380839543 
0.14618233 
0.000288593 
0.0000815671 

The mean estimates of the parameters tend to be closer to the true parameter values. It is observed that for all values of 
n, the variance and MSE of the estimators of a, b, λ and Ө are small as expected. We conclude, in Section 6, and an 
application to real data. 

6. Numerical example
In this section we provide a data analysis to see how the Exponential Modified Weibull logistic distribution works in 
practice. The data have been obtained from Aarset (1987) and it is provided below. It represents the lifetimes of 50 
devices. 
0.1,0.2,1,1,1,1,1,2,3,6,7,11,12,18,18,18,18,18,21,32,36,40,45,46,47,50,55,60,63,63,67,67,67,67,72,75,79,82,82,83,84,8
4,84,85,85,85,85,85,86,86 . 
For the data, we fit the Exponential Modified Weibull Logistic distribution (EMWL) defined in (2) and compare it with 
Modified Weibull distribution (MW) (for 0 < � < ∞), Transmuted New Generalized Inverse Weibull Logistic distributions 
(TNGIWL) (for −∞ < � < ), Transmuted Weibull Logistic distribution (TWL) (for −∞ < � < ∞) and Transmuted 
Kumaraswamy Logistic distribution (TKL) (for −∞ < � < ∞) models with corresponding densities: 
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The maximum likelihood method is applied to estimate the parameters of the five models Exponential Modified Weibull 
Logistic distribution (EMWL), Modified Weibull distribution (MW), Transmuted New Generalized Inverse Weibull 
Logistic distributions (TNGIWL), Transmuted Weibull Logistic distribution (TWL) and Transmuted Kumaraswamy 
Logistic distribution (TKL). The resulting estimates with the negative of the likelihood function (−ℓ). 

Table (4). The maximum likelihood estimated and Log- likelihood function for the data set. 
Model maximum likelihood estimates −ℓ

MW � ̂ = 2.159 × 10−8

� ̂ = 4.014
Θ̂ = 0.012

127.497

EMWL � ̂ = 0.0031
� ̂ = 2.3636
� ̂ = 0.0352
Θ̂ = 0.1200

108.988

TNGIWL � ̂ = 3.41556
� ̂ = 1.43833
� ̂ = 0.01204
�̂ = 0.98252
Θ̂ = 0.52687
� ̂ = 1.28252

327.239

TWL � ̂ = 0.26588
� ̂ = 2.26213
� ̂ = 0.05786

244015

�̂ = 0.03000
TKL � ̂ = 2.42574

� ̂ = 0.195187
� ̂ = 0.089133
�̂ = 0.568360

374.5197

Table (5): Criteria comparison for the data set 
Model  −ℓ AIC AICC BIC 
MW 127.497 260.994 261.51574 260.0909 

TNGIWL 327.239 666.478 668.43149 664.6718 

TWL 244015 488038 488038.88889 488036.7959 
TKL 374.5197 757.0394 757.92829 755.8353 

MWL 108.988 225.976 226.86489 224.77188 

The variance covariance matrix (�) −1 of the MLEs under the EMWL distribution for the data set is computed as 

There for, 95% confidence interval for a, b, λ ��� � are [0.001615, 0.004489], [2.116642, 2.610558], [0.031246,
0.039194], [0.103826, 0.136173] respectively.
In order to compare the five distributions, we consider criteria like AIC (Akaike information criterion), AICC (corrected 
Akaike information criterion) and BIC (the Bayesian information criterion) for the data. As shown in table (5), the better 
distribution corresponds to smaller −ℓ, AIC, AICC and BIC values  

Here k is the number of parameters and n is the number of observations. The values of the parameters’ estimates are 
used to plot the pdf for the five distributions EMWL, MW, TNGIWL, TWL and TKL in Fig (4) 
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Figure (4). Estimated densities of the models for the data set.

7. Concluding Remarks
In this paper, we proposed a new distribution, named the Exponential Modified Weibull logistic distribution which extends 
the Modified Weibull distribution. Several properties of the new distribution were researched, including mode, Rényi and 
Shannon entropy and implicit expression for the quantile function, characteristic function and rth moment. The new 
extended model has an increasing hazard rate function. The model parameters are estimated by maximum likelihood. An 
application of the Exponential Modified Weibull logistic distribution (EMWL) to real data is considered. The results of 
our study indicate that the EMWL distribution has the lowest AIC, AICC and BIC statistics among all the sub-models. 
From the plots of the fitted densities and histogram, clearly, the EMWL distribution provides a closer fit to the histogram 
than the other Modified Weibull (MW), Transmuted New Generalized Inverse Weibull logistic (TNGIWL), Transmuted 
Weibull Logistic distribution and Transmuted Kumaraswamy Logistic model. Therefore, the new EMWL model can be 
used quite effectively in analyzing data. Also, we note that the Monte Carlo simulation indicates that the performance of 
the maximum likelihood estimation is quite satisfactory. Finally, the application to the real data sets shows that the fit of
the new model is superior to the fits of its main sub- models. We hope that the proposed model can be used effectively as 
a competitive model to fit real data.  
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