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Abstract:-

This paper introduces a new distribution named Exponential Modified Weibull logistic distribution. This distribution
generalizes the following distributions: (1) Linear Failure Rate Logistic Distribution, (2) Weibull Logistic Distribution,
(3) Rayleigh Logistic Distribution, (4) Exponential Logistic Distribution, where the failure rate, Weibull, Rayleigh and
exponential distributions are the distributions most used for analyzing lifetime data. The properties of the new distribution
are derived that include expressions for the r'moment, characteristic function and quantile function. The estimation of

model parameters are performed by the method of maximum likelihood and hence evaluation of the performance of
maximum likelihood estimation using simulation.

Keywords:-Modified Weibull distribution, Quantile function, and maximum likelihood estimation.
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1. INTRODUCTION

In this paper we introduce a generalization of the Logistic distribution via the modified Weibull distribution and the
exponential generator.This leads to the Exponential Modified Weibull Lodistic distribution (EMWL) using the
exponential generator applied to the odd ratiocx)—5 where [G(x) = 1 — G(x)] such as the exponential Pareto distribution
by AL-Kadim and Boshi (2013), exponential Lomax distribution by Bassiouny et al. (2015). The Weibull distribution is
an important and popular distribution for modeling lifetime data. Recently, new classes of distributions were based on
modifications of the Weibull distribution to provide a good fit to data sets. The two-parameter flexible Weibull extension
was discusse d by Bebbington et al. (2007). Zhang and Xie (2011) studied the characteristics and application of the
truncated Weibull distribution. Xie et al. (2002) proposed a three-parameter modified Weibull extension. The modified
Weibull distribution was introduced by Lai et al. (2003). Recent studies of the modified Weibull include Jiang et al.
(2010), Soliman et al. (2012) and Upadhyaya and Gupta (2010). Among the four-parameter distributions, the additive
Weibull distribution of Xie and Lai (1996) with cdf

(X:0,a,b)=1—¢ebxmaxb x>,

The Modified Weibull distribution that we use in our article of Sarhan and Zaindin (2009) can be derived from the additive
Weibull distribution by setting = 1. The article is outlined as follows. In Section 2 we introduce a new four-parameter
distribution function called as Exponential Modified Weibull Logistic distribution with parameters a, b, 1 and 6 and it
will be denoted as EMWL (a, b, A, 8) and provide plots of density function (pdf) and cumulative distribution function
(cdf), along with the hazard and survival function. It is observed that the EMWL (a, b, 4, 6) is a unimodal pdf and it has
increasing hazard functions. Section 3 introduces some properties of the EMWL distribution as well as a complete
discussion in deducing an implicit form for the Quantile function, numerical values for mode and explicit form for the
characteristic function and moments followed by the deduction of Renyi and Shannon entropies. In Section 4 we derive
the maximum likelihood estimators of the unknown parameters of the EMWL distribution. We present, in Section 5, a
simulation study, followed, in Section 6, by an application to real data to illustrate the importance of the EMWL
distribution.

2. The Exponential Modified Weibull Logistic Distribution (EMWL)
The cdf of the MWD (4. a. b) derived by Sarhan and Zaindin(2009) takes the following form
F(X:8,a,b) =1 —e 82" 3y,
wherebh =0, 8,0 = 0.suchthatd +a = 0.

Here 8 is a scale parameter. while a and b are shape parameters.

1

P define the cdf

Then the exponential modified Weibull family obtain by replacing x with
tamily by
- -0y
F(X:8,a,b)=1—e 1-Glx}y 1-G(x x>0, b=0, 8,a=0,
Taking G (x) as the logistic distribution defined by

1

G) =——,
W) ==

—co < x < 00,4 > 0.

Then the cdf of the EMWL (X: 8, a, b, 4) given by

Fouwy(X:6,0,b,2) = 1 — e 00+™)-al+e™)" oo oy <0 2> 0, 6,020,
(1)

and the pdf of the EMWL (X: 8, a, b, 1) defined by
; \b- o )P
ferwr((X:6,a,b,2) = le™ [5 +ab(1 +e™) 1} g=8(1+e*)-al1+e™)
—wo<x<o bA>0 6az=0, (2)

Plots of the pdf and cdf of the EMWL for different values of the parameters are given n Figures
(1) and (2).
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Figure (1). The pdf of the EMWL distribution for different values of the parameters.
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Figure (2). The cdf of the EMWL distribution for different values of the parame

1

L fo
=5~
3)

de?* [E) +ab(1+ e’"*"‘)b_l]

haard

#=0.5 b=05 A=058=1

— !

!
!
/

cesess 3=1 b=15 =06 B=1

=+ 3=0.5 b=7 A=0.38=0.1

data set

7/
-
I 1
4

1

2

-
_————

of the EMWL distribution for selected values of the parameters.

4
Figure (3): The hazard rate
Let X be a random variable with density function (2), we write X~EM (x; 8, a, b, 1) Figure (1) shows the diverse shape
of the EMWL pdf with different choice of parameters that include some well-known distributions. As the random variable
X — oo or — oo the density of the EMWL distribution tends to zero. Figure (3) illustrates some possible shapes of the

Volume-4 | Issue-1 | Jan, 2018



instantaneous failure rate function for some selected choices of parameters for the EMWL model. A characteristic of the
EMWL distribution shows that the distribution has increasing hazard rate function for all choice of parameters. The
EMWL distribution contains several well-known distributions as special cases when its parameters change. Table 1
demonstrates the sub-models of the EMWL distribution.

Table (1): Sub-models of the Exponential Modified Weibull Logistic distribution
Distribution O|a |B A

The Linear Failure Rate Logistic Distribution (LFRL) - - ]2 -
The Weibull Logistic Distribution (WL) 0 f- |- 210 -
The Rayleigh Logistic Distribution (RL) 0 |- |._ 1l -

The Exponential Logistic Distribution (EL) - 10 -
The Exponential Logistic Distribution (EL) - |- -

Section 3 is devoted for studying statistical properties of EM(8, a, b, 1) such as a complete discussion in deducing an
implicit form for the Quantile function, numerical values for mode at different values of parameters and explicit expression
for the characteristic function and " moment followed by the deduction of Renyi and Shannon entropies

3. Properties of the EMWL distribution

3.1. u'™ Quantile

Theorem 1:

Let X be a random variable following MW(8, a, b, A) distribution and let 1 (0,1). A value of x such that F(x)=u is
called a quantile of order u for the distribution. A quantile of order u is the real solution of the following equation
Log [l —u]+6(1 +e*)+a(l +et)b=0

Proof:

Since (x) is continuous and strictly increasing, then the quantile function

x=F"(u), u € (0, 1) can be straightforward computed by inverting (1) to obtain

u=1 — e— (1+e*) —a(l+et)b 1-u=e—6(1+e’)—a(l+erx)b

Log (1 —u)=-6 (1+e™) — a (1 + ex)?b

Therefore, an approximate Quantile function of order u of the EMWL distribution is the real solution of the equation in

(4).

Equation (4) has no closed form solution in x, so we have to use a numerical tequnique .
Can use (4), to derive the following special cases:

@) The u-th quantile of the LFRL(6, a) distribution, by setting b=2, as
1 1
x=— logf01] +\/92—4alog(1—u))—
A 2a

(i) The u-th quantile of the WL(a, b) distribution, by setting 8 =0, as
x=""1p—1] log[(log (1 —u)) — -_

A a
(iii) The u-th quantile of the RL(a) distribution, by setting b=2 and 8 =0, as

— iog [V iog (1
= 2 log [V ~log(

(iv) The u-th quantile of the EL(6) distribution, by setting a =0, as_

1 =4
x=- log [(?mg(l —u)) — 1]

u) —1]

Or by putting b=1
1 -1
x == log|(-———log(1—u —1]
5 log | (5o loB(1 ~)
Put u=0.5 in equation (4) we get the median of EMWL (6, a, b, 1).
The random sample can also be easily generated from (4) by taking U as a uniform random variable in (0, 1).

3.2. Mode

Mode is one of the most important characteristic features for the distribution. The mode of the EMWL (0, a, b, 1,) is
deduced by differentiating the pdf (1).

df(x;0,a,b,n, A, t)

dx
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= A2Ae%87a [ab(b — 1)ABY 2+ [0 + abOBY '[1 — A(6 + abOB> ]|

Where

A=et & B=1+A.

Since A, B >0, then

[(b—1)ABb2+[0 +abOB '] [1 — A6 + ab§B" )]] =

But we cannot obtain an explicit form so we calculate the mode numerically for different values of parameters

Table (2): Mode for some chosen different values of parameters.

Parameters Mode

a=0.03 b=0.02 4=05 6=0.1 4.59943130379
a=05 b=05 A=01 6=1 —0.4120557810
a=05 b=04 A=03 6=03 2.704684469945
a=25 b=04 2=0.03 6=0.03 1.2206998906607
a=1 b=15 1=06 6=1 —1.5545128973
a=05 b=7 A=03 0=1 —5.7842349057

3.3. Characteristic Function
In this subsection, we derive the characteristic function (cf) of EMWL distribution.

Theorem 2:
- (—1)%afe® i _
o) = 2 r(R k1) [o(8) +ap (P Y]
Kf=o £1977HF1
b>0 6,a=0 ,A>0and - <x <o (5)
Proof:
We have the (cf) of the EMWL distribution as follows ®x(p) = E(eirx) =
J- plpx Joix [E +ab(1+ e’b‘)b_l] e-6(1+6%)-a(1+e*) gy
Setting z = e and using the following expansions grotiisp given by
it _ N DM+
=) 7 - O
£=0
then
¥ ¢ r o L
®,(p) = %E f 75 (1 + 7)bte—00+2) gz 4 a;bf 7 & (1 + z)bf+b-1o-8(1+2)]
£=0 o

Using the series expansion, the above equation reduces to

o,.(p) = i (_—l)ﬂ[ﬂ (bjf)f ZL,LE”E—S(Hz} dz

£!
kA=0
G‘
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0
By integrating the above equation we obtain the cf of the EMWL(x; 6, a, b, A) distribution given by (5). We study the

following cases.
(1) When 6=0, a>0, then

@, (p) = ab (0o T(£+1)r(—F-be-b)

pe £ [(1—bf—h)
Re (f+b€+b) < o&Re(f) > 1
A A
(11) When > 0, a = 0. we have
@ (p)—e_e F(ip+1) Re(i’ﬁ) = |
X e_’;f_ 1:1 i) ‘1

3.4 rth Moment
Theorem 3:

If X follows the EMWL(x; a, b, 1), then the r'" moment of X, p,, is given as follows

(—1)¥(a)fe® ar T'(k+1) _
by = (11)’" Z ;r" e T ( T )[3 (ff)+ ab (bf +£} 1)]

k=0
Proot:
We have the r' moment of the EMWL distribution as follows
= E(x7)
_ b
= f x" detx [6‘ +ab(1+ e’b‘-‘)b 1] e—6(1+e™)-a(1+e*)" g

Again setting z = e#*and using the expansion (*), we obtain

Hr:(ﬂ)?z( 1;‘;( J [6 J- (logz )" (1+Z)M -8(1+2) 4,
=0

0

+ abJ‘ (logz )T (1 + z)bf+b-1g-00+2)

Using the series expansion, the above equation reduces to

By = [;),, = lj;'(a)f J‘ z®(logz ) e %2 dz

D

+ ab (bf +£ )E_SJ- z* (logz )" e~%2dz]

0

By integrating the above equation we obtain the r** moment of the EMWL(x: 6, a, b, A) distribu-
tion given by (6).

Based on the results given in (6). the measures of skewness and kurtosis of the EMWL
distribution can be obtained according to the following relations. respectively,

. Mz 3w, +2p°
= 3 2 . 1 ; {?)
(2 — 1472
Wy — 4 g + 61,7, — 34, -
(12 — 1y %)? ' @)

B =
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3.5. Reni and Shannon entropies

The notion of entropy is of fundamental importance in different areas such as phys-
ics. probability and statistics. communication theory, and economics. Since the entropy of
a random variable iz a measure of variation of the uncertainty, the Renyi entropy can be
deduced to yield

oo (D) e
ng[;{E 1k;g £ (ﬂaf+k

3]

() =

if rE+k) [ (f}f) + ab (P +Rb )
F206+1 .(9)

A special case, defined in Shannon’s [1948] pioneering work on the mathematical theory of com-
munication. given by Shannon entropy - a major tool in information theory and in almost every
branch of science and engineering is

hen(frwe) = —log

= i (1f(@)’e™ (Em) s (bf’ +ab (P ;a Y] ek + 1) +F(1+k)log%]

§
k.£=0

b

Z Eﬂﬁ(i‘.?i (é.)bé log [F(bq‘? +1)+ab @-) I(bf+b)

S NC .

'bf+bm—m+1)

+ab (é)&l"{b-f + b+ bm—m)
(_%ﬂ [@M [(b€ +2) + ab @bm I(be+b+1)+a (E)w F(be + b +1)

kA=0
bi+2b

1
2 —
+a b(a) I'(bf + 2b)

In Section 4 we discuss maxmmum likelihood estimation and in Section 5 we present a
simulation study.

4. Maximum likelihood estimation
Here, we consider the maximum likelihood estimators (MLE) of the EMWL (8, a, b, 1) distribution given in (2). Let
XU(X1, X2, Xy be a random sample of size n from this distribution. The log-likelihood function can be written as follows

logL =nlogd + &Z X; — EZ(:L + ghe) — aZu + fo[)b
i=1 i=1 i=1

+Z log(6 + ab(1 + e™¥)b-1

Respectively, by taking the partial derivatives of the log- likelihood function with respect a, b, A and 6, then equating it
To zero, we obtain the estimating equations
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dLogL _i (1 4 g?-xz')b + i b(l + Ele}—1+b
da — = ab(1+ etx)~1+b g °
ﬂLogL

5 Z(l + e?*)PLog[1 + e*x]

i=1
+i a(l+ ™) 1b 4 gh(1 + e?*o)~ 1+&Log[1+e?’ﬁ]
ab(1l + et=)-1+b + g

i=1

LogL 1 N . N om0 N poden o oo 1h
= _14_21 X, azle X; aZbe (1 +e™)~ %0y,

. i a(—1+ b)be™i(1 + e**)=2+by,
ab(1 + e#x)~1+b + g '

=1

ﬂLDgL 1
1+ e +Z
Z( ™) ab(1+ e™)1*b + g

The MLE can be determlned numerlcally from the solutlon of nonlinear system of equations, subsequently; these solutions
will yield the MLE estimators d, b, Xand 6. We required the observed information matrix for the interval estimation and
hypothesis testing. For the four parameters EMWL distribution all the second order derivatives exist. Thus we have the
observed information matrix as follows

0*logL d%logL a2logl d%logL
da? dadb dadi dadd
0%logL d%logL a2logl d%logl
dbda db2 dbdA abda
K™ =—E| 9%logL d%logl @%logL @%logl
0lda  8Adb gA* 0106
d2logL @%logL A%logL 8*logl
060a  08db  060. 087

For interval estimation and hypothesis tests on the model parameters, we require the information matrix. The Fisher
information matrix K™' = (¢), ¢ = (a, b, 4, 9).

Under conditions that are fulfilled for the parameter ¢ in the interior of the parameter space
but not on the boundary. the asymptotic distribution of [Vi(G,; — a), vﬁ(ﬁML = b), \,"rﬁ(im
1), V(8 — 8)]is Ny(0,K~*(a, b, 4,6)7) defined by Miller (1981) The asymptotic nor-
mal N, (O, K- . §ML)T) distribution of § = (@yyz, Bagzs Apgr, Bag )7 can be used to

construct confidence regions for some parameters and for the hazard and survival functions. In
fact. a100(1 — ») % asymptotic confidence interval (ACI) for each parameter is given by

ACI, = (am. — Zy 24/ K11 lpg + Zy 24/ K11 )
ACI, = (EML T Zyf24 Kzzrgm. +Zy /24 Kzz)»

ACL = (iML - Z]ffZ‘\n'lHK_?.Ba Anar, + zy 24/ Ka3),

AClg = (ém = Zy 2 Kaa, Brar + Zyj2y/Ksa),

Where K;; denotes the i diagonal element of K™!' = (duw, Bui, Xur, Oui)" for1=1, 2, 3, 4 and zo2is the (10/2 ) of the
standard normal distribution.
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5. Simulation Study
We conducted Mont Carlo simulation studies to assess the finite sample behavior of the EMWL (a, b, A, 6) all results

were obtained from 1000 Mont Carlo replication simulations. The EMWL random number generation was performed
using the inversion method. In each replication, random sample of size n is drawn from the EMWI (a, b, 4, 8) distribution
and the maximum likelihood estimates (MLEs) of the parameters were obtained. The mean, variance, bias and mean
squared error (MSE) for each parameter was computed under different sample size n=10, 25, 75, 100, and 200.

Table (3): Mean estimates, bias, variance and mean square errors of the (MLEs) whena=2,b=3,1=0.03,0

=0.012.

N |parameter Mean Variance Bias MSE
10 ab 4.606577 8.284913655 2.6065 7 - 15.079
A 5 11.7264116 1.1341 2
o 1.865921 0.038825932 0.2725 13.012
9 0.002317102 6 5
0.302560 0.0925 0.1131
2 3 1
0.104531 0.0108 8
7
25 ab 3.66414 1.275658876 1.6641 4.0450208 6.7425096
A 2.3480497 6.317470551 4 - 0.0242384
(S} 5 0.018200814 0.6519 -0.0777 |0.0108609
0.1077023 0.005815521 0.0710
8 3
0.0830312 5
75 a 4.4440625 0.107298029 2.4440625 6.0807395330.532723
b 4.7534925 0.02655224 1.7534925
A 0.01502036 0.0000278341 -0.01497963 3.1012881883.351777
o 8 0.000318574 0.02973075
0.03985742 0.000252223-0. 079
3 0.001202491-1.
365
100 | a 4.5057575 0.085169826 2.5057575 6.363990475
b 4.8892675 0.029718544 1.8892675 3.59905023
A 0.01700222 0.000018083 - 0.000187025
o 5 0.0000843884 0.01299777 0.000840537
0.03949815 0.02749815
200 | a 3.5125975 0.052888346 1.5125975 2.380839543
b 2.63189 0.010677358 -0.36811 0.14618233
A 0.01318597 0.0000058813 - 0.000288593
o 5 5 0.01681402 0.0000815671
0.01945587 0.0000259771 0.00745587

The mean estimates of the parameters tend to be closer to the true parameter values. It is observed that for all values of
n, the variance and MSE of the estimators of a, b, A and © are small as expected. We conclude, in Section 6, and an
application to real data.

6. Numerical example

In this section we provide a data analysis to see how the Exponential Modified Weibull logistic distribution works in
practice. The data have been obtained from Aarset (1987) and it is provided below. It represents the lifetimes of 50
devices.
0.1,0.2,1,1,1,1,1,2,3,6,7,11,12,18,18,18,18,18,21,32,36,40,45,46,47,50,55,60,63,63,67,67,67,67,72,75,79,82,82,83,84,8
4,84,85,85,85,85,85,86,86 .

For the data, we fit the Exponential Modified Weibull Logistic distribution (EMWL) defined in (2) and compare it with
Modified Weibull distribution (MW) (for 0 < x <), Transmuted New Generalized Inverse Weibull Logistic distributions
(TNGIWL) (for —o < x <o0), Transmuted Weibull Logistic distribution (TWL) (for —c0 < x < o) and Transmuted
Kumaraswamy Logistic distribution (TKL) (for —co < x < o) models with corresponding densities:

fuw = (6 +abx? Ve 82" y =0 ph>0& a6 =0
frvenwe () = qi(ﬁe""x + abe'b’b") (e[' g™ '“"_w'x}) (1 i '“_m})n_l
[l —t+ Zt(l - e{*g‘?_lx’“_aﬁx})n] , Babn>01=0t]|<land—c <x<oo
Frwe(x) = abie(#br-as™) {1 —t+ Ete‘“"m]J

ab>0l>o0and|t]| =1, —-mw<xy <o,

- p a ajb
(_1ibji;;+ll1_(1+i-/3) ] P(ﬁ) } ]

ab>0Al>o0and t|=1, —eo<x<w

b—-1

Free (%) =

[l—t+2f
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The maximum likelihood method is applied to estimate the parameters of the five models Exponential Modified Weibull
Logistic distribution (EMWL), Modified Weibull distribution (MW), Transmuted New Generalized Inverse Weibull
Logistic distributions (TNGIWL), Transmuted Weibull Logistic distribution (TWL) and Transmuted Kumaraswamy
Logistic distribution (TKL). The resulting estimates with the negative of the likelihood function (—£).

Table (4). The maximum likelihood estimated and Log- likelihood function for the data set.

Model

maximum likelihood estimates -

MW

d=2.159 %1078
b=4.014
©=0.012

127.497

EMWL

a=0.0031

b'=2.3636
1=0.0352
©&=0.1200

108.988

TNGIWL

a=3.41556
b'=1.43833
£=0.01204
t=10.98252
©'=0.52687
77 =1.28252

327.239

TWL

a=0.26588
b'=2.26213
£=0.05786

244015

t=0.03000

TKL

a=2.42574

b'=0.195187
X=0.089133
t=10.568360

374.5197

Table (5): Criteria comparison for the data set

Model —L AIC AICC BIC

MW 127.497 260.994 261.51574 260.0909
TNGIWL 327.239 666.478 668.43149 664.6718
TWL 244015 488038 488038.88889 488036.7959
TKL 374.5197 757.0394 757.92829 755.8353
MWL 108.988 225.976 226.86489 224.77188

The variance covariance matrix (¢) ' of the MLEs under the EMWL distribution for the data set is computed as

5.37508 x 1077 —2.63722 % 10" —5.23231x 1077 253754 x 107
—263722 x 10-% 0.015875700000 —2.16827 x 10~* —3.56274 x 1073
—-523231x 10777 -2.16827 x 10~*  4.11029 X 10=® —5.05316 X 107°

253754 x 10  —3.56274x 10~° —5.05316 x 107 6.80931 % 10

Thus var (&) = 5.37508 x 107, var (b) = 0.0158757, var(1) = 4.11029 x 107,
var (§) = 6.80931 x 1073

There for, 95% confidence interval for a, b, A and 6 are [0.001615, 0.004489], [2.116642, 2.610558], [0.031246,
0.039194], [0.103826, 0.136173] respectively.

In order to compare the five distributions, we consider criteria like AIC (Akaike information criterion), AICC (corrected
Akaike information criterion) and BIC (the Bayesian information criterion) for the data. As shown in table (5), the better
distribution corresponds to smaller —¢, AIC, AICC and BIC values

AIC =2K — 2¢
2k(k+1)

AICC = AIC + ——,
n—k-—1

BIC = klogn — 24,

Here k is the number of parameters and n is the number of observations. The values of the parameters’ estimates are
used to plot the pdf for the five distributions EMWL, MW, TNGIWL, TWL and TKL in Fig (4)
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Figure (4). Estimated densities of the models for the data set.

7. Concluding Remarks

In this paper, we proposed a new distribution, named the Exponential Modified Weibull logistic distribution which extends
the Modified Weibull distribution. Several properties of the new distribution were researched, including mode, Rényi and
Shannon entropy and implicit expression for the quantile function, characteristic function and r moment. The new
extended model has an increasing hazard rate function. The model parameters are estimated by maximum likelihood. An
application of the Exponential Modified Weibull logistic distribution (EMWL) to real data is considered. The results of
our study indicate that the EMWL distribution has the lowest AIC, AICC and BIC statistics among all the sub-models.
From the plots of the fitted densities and histogram, clearly, the EMWL distribution provides a closer fit to the histogram
than the other Modified Weibull (MW), Transmuted New Generalized Inverse Weibull logistic (TNGIWL), Transmuted
Weibull Logistic distribution and Transmuted Kumaraswamy Logistic model. Therefore, the new EMWL model can be
used quite effectively in analyzing data. Also, we note that the Monte Carlo simulation indicates that the performance of
the maximum likelihood estimation is quite satisfactory. Finally, the application to the real data sets shows that the fit of
the new model is superior to the fits of its main sub- models. We hope that the proposed model can be used effectively as
a competitive model to fit real data.
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