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Abstract:-

A k-uniform hypergraph H is a pair (Ve), where V = {v;,vs,...,vs} is a set of n vertices and ¢ is a family of k-subset of V
called hyperedges. We consider the problem of constructing a decomposition for complete bipartite uniform hypergraph
into loose cycles.
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INTRODUCTION

A decomposition of graph G = (V, E) is a partition of the edge-set £. The problem of constructing decomposition is a long-
standing and well-studied one in graph theory; in particular, for the complete graph K, it was solved in the 1890s by
Walecki who showed that K, has a Hamiltonian decomposition if and only if » is odd, while if # is even K, has a
decomposition into Hamiltonian cycles and a perfect matching. As many problem in graph theory, it seems natural to
attempt a generalization to hypergraphs. Indeed, the notion of Hamiltonian was first generalized to uniform hypergraph
by Berge in his book [1]. His definition of a Hamiltonian cycle in a hypergraph H = (V,E) is a sequence (vo,e1,vi,€2," "
,Vn-1,€n,0), Where V' = {vo,vi,"** ,w,}, and ey, ez, - e, are distinct elements of E, such that the hyperedges e; contains both
vi+1 and v(mod n). The study of decomposition of complete 3-uniform hypergraph into cycles of this type was begun by
Bermond et al in the 1970s [3] and completed by Verrall in 1994[6]. A k-uniform hypergraph H is a pair (V,¢), where V' =
{vi,v2,-*+ ,vu} is a set of n vertices and ¢ is a family of k-subset of V' called hyperedges. If ¢ consists of all k-subsets of V,

then H is a complete k-uniform hypergraph on » vertices and denoted byK f, At the same time we may refer a vertex v; to
vitn. A cycle of length [ of H is a sequence of the form (vi,e1,v2,e2,-* ,v,e,v1), where vi,vo, -+ ,v; are distinct vertices and
ei,ex, e are k-hyperedges of H, satisfying the following conditions: (i) v, vi+1 € e;, 1 < i </, where addition on the
subscripts is module #; (ii) e; 6= ¢; for i 6=j. This cycle is known as a Berge cycle, having been introduced in [1]. A
decomposition of H into cycles is a partition of the hyperedges of H into cycles length (/;, /2, ---, Im).

In this paper, we consider the decomposition of bipartite complete 4-uniform hypergraph K, ,* for g = 7,k = 4.

1 Main results

Before giving the decomposition of hypergraph, we need some definitions about hypergraphs.

Definition 1 A loose cycle is of length / is a hyperpraph made of / hyperedges e), e2, -+, el such that, for any i,j, ife;N ¢,
6= @, then |ei N ej| =t <k.

Definition 2 A bipartite hypergraph is a pair (V,¢), where V=V, U V2, V1N V2= @, and for any ¢;€ ¢, e; U V1 6= 0 and ¢;
U Vi6=0.

-4
Theorem 1 Bipartite complete 4-uniform hypergraphh 7,7 could be decomposed into loose cycles length 7 and 14, where
for any two hyperedges e;e;in a loose cycle, if e; N e;6= @, then |e; N ¢ = 2.

two types.

Type 1 First of all, we arrange 35 hyperedges as following:
123,345,567,712,234,456,671
135,572,246,613,357,724,461
147,736,625,514,473,362,251
124,457,713,346,672,235,561
245,571,134,467,723,356,612

Where every line is a cycle of length 7, after adding a vertex k € V> to every hyperedge,
123k , 345k , 567k , 712k , 234k , 456k , 671k
135k , 572k , 246k , 613k , 357k , 724k , 461k
147k , 736k , 625k , 514k , 473k , 362k , 251k
124k , 457k , 713k , 346k , 672k , 235k , 561k
245k , 571k , 134k , 467k , 723k , 356k , 612k

)0

Now we have = 7 =35 cycles of length 7.

Then by exchanging the positions for i and (i = 1,2,--+,7), we have another =35 cycles of length 7.
Type 2 For convenience, we apply
iy iy iy 05 dg i 0\ (i iy i3 i4 5 ig i1
JUJ2 03 )4 s 6 Jro JuoJ2 )3 g4 )5 J6 T
To express cycle of length 7, where i1isisisisisi7 is a permutation of V;, J1J2J3J4J5J6J7 is 3 permutation of V5, four
adjacent elements in the upper and lower sides represent an hyperedge. Based on the above symbols,
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To express cycle of length 14. Based on the symbol above,
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Are 21 cycles of length 7?

We apply
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Are 21 cycles of length 147 It is easy to verify for any two cycles above, there is no common hyperedge between these
A4 e (T\(T (T _
two cycles. Furthermore, |]‘7‘7| - 2(3) (1) + (2) (z) -
[(2x35) x7]+ [(21x7) + (21x14)], where the parentheses in the first parenthesis is the number of cycles of length 7 for
type 1, two 21 of second parentheses are the numbers of cycles of length 7, 14 for type 2 respectively.
-4
We have completed the decomposition of hypergraphsl‘ 7.7,
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