EPH - International Journal of Mathematics and Statistics

ISSN (Online): 2208-2212 Volume 4 Issue 2 July 2018

DOI:https://doi.org/10.53555/eijms.v4i2.19

A DECOMPOSITION OF COMPLETE BIPARTITE 4-UNIFORM HYPERGRAPH $K^4_{7,7\ \rm INTO\ LOOSE\ CYCLES}$

Chunlei Xu*12

^{*1}Mongolian State University of Education, Ulaanbaatar, Mongolia ²College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, P.R. China

*Corresponding Author:-

Abstract:-

A k-uniform hypergraph H is a pair (V, ε), where $V = \{v_1, v_2, ..., v_n\}$ is a set of n vertices and ε is a family of k-subset of V called hyperedges. We consider the problem of constructing a decomposition for complete bipartite uniform hypergraph into loose cycles.

Keywords:-Hypergraph, Loose Cycle, Decomposition

© Copyright 2018 EIJMS Distributed under Creative Commons CC-BY 4.0 OPEN ACCESS

INTRODUCTION

A decomposition of graph G = (V, E) is a partition of the edge-set *E*. The problem of constructing decomposition is a longstanding and well-studied one in graph theory; in particular, for the complete graph K_n , it was solved in the 1890s by Walecki who showed that K_n has a Hamiltonian decomposition if and only if *n* is odd, while if *n* is even K_n has a decomposition into Hamiltonian cycles and a perfect matching. As many problem in graph theory, it seems natural to attempt a generalization to hypergraphs. Indeed, the notion of Hamiltonian was first generalized to uniform hypergraph by Berge in his book [1]. His definition of a Hamiltonian cycle in a hypergraph H = (V,E) is a sequence $(v_0,e_1,v_1,e_2,\cdots,v_{n-1},e_n,v_0)$, where $V = \{v_0,v_1,\cdots,v_n\}$, and e_1,e_2,\cdots,e_n are distinct elements of *E*, such that the hyperedges e_i contains both v_{i+1} and $v_i(mod n)$. The study of decomposition of complete 3-uniform hypergraph into cycles of this type was begun by Bermond et al in the 1970s [3] and completed by Verrall in 1994[6]. A *k*-uniform hypergraph *H* is a pair (V,ε) , where $V = \{v_1, v_2, \cdots, v_n\}$ is a set of *n* vertices and ε is a family of *k*-subset of *V* called hyperedges. If ε consists of all *k*-subsets of *V*,

then *H* is a complete *k*-uniform hypergraph on *n* vertices and denoted by K_n^k . At the same time we may refer a vertex v_i to v_{i+n} . A cycle of length *l* of *H* is a sequence of the form $(v_1, e_1, v_2, e_2, \dots, v_l, e_l, v_1)$, where v_1, v_2, \dots, v_l are distinct vertices and e_1, e_2, \dots, e_l are *k*-hyperedges of *H*, satisfying the following conditions: (i) $v_i, v_{i+1} \in e_i$, $1 \le i \le l$, where addition on the subscripts is module *n*; (ii) $e_i = e_j$ for i = j. This cycle is known as a Berge cycle, having been introduced in [1]. A decomposition of *H* into cycles is a partition of the hyperedges of *H* into cycles length (l_1, l_2, \dots, l_m) .

In this paper, we consider the decomposition of bipartite complete 4-uniform hypergraph $K_{q,q}^{k}$ for q = 7, k = 4.

1 Main results

Before giving the decomposition of hypergraph, we need some definitions about hypergraphs.

Definition 1 A loose cycle is of length *l* is a hyperpraph made of *l* hyperedges e_1, e_2, \cdots , el such that, for any *i*,*j*, if $e_i \cap e_j$ 6= \emptyset , then $|e_i \cap e_j| = t < k$.

Definition 2 A bipartite hypergraph is a pair (V,ε) , where $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, and for any $e_i \in \varepsilon$, $e_i \cup V_1 = \emptyset$ and $e_i \cup V_1 = \emptyset$.

Theorem 1 Bipartite complete 4-uniform hypergraph $K_{7,7}^4$ could be decomposed into loose cycles length 7 and 14, where for any two hyperedges $e_{i_i}e_j$ in a loose cycle, if $e_i \cap e_j = \emptyset$, then $|e_i \cap e_j| = 2$.

Proof. We construct the decomposition of $K_{7,7}^4$. Let $V_1 = \{1,2,3,4,5,6,7\}, V_2 = \{-1, -2, -3, -4, -5, -6, -7\}$. We discuss it in two types.

Type 1 First of all, we arrange 35 hyperedges as following:

123,345,567,712,234,456,671 135,572,246,613,357,724,461 147,736,625,514,473,362,251 124,457,713,346,672,235,561 245,571,134,467,723,356,612

Where every line is a cycle of length 7, after adding a vertex $k \in V_2$ to every hyperedge,

k, 345k, 567k, 712k, 234k, 456k, 671k *k*, 572k, 246k, 613k, 357k, 724k, 461k *k*, 736k, 625k, 514k, 473k, 362k, 251k *k*, 457k, 713k, 346k, 672k, 235k, 561k *k*, 571k, 134k, 467k, 723k, 356k, 612k

Now we have $\frac{\binom{7}{3}\binom{7}{1}}{7} = 35$ cycles of length 7.

Then by exchanging the positions for *i* and $i(i = 1, 2, \dots, 7)$, we have another $\frac{\binom{7}{1}\binom{7}{3}}{7} = 35$ cycles of length 7. **Type 2** For convenience, we apply

$(i_1$	i_2	i_3	i_4	i_5	i_6	i_7	i_1	or	i_1	i_2	i_3	i_4	i_5	i_6	i_7	
j_1	j_2	j_3	j_4	j_5	j_6	j_7	j_1		$\langle j_1$	j_2	j_3	j_4	j_5	j_6	j7)	

To express cycle of length 7, where $i_1i_2i_3i_4i_5i_6i_7$ is a permutation of V_1 , $J_1J_2J_3J_4J_5J_6J_7$ is a permutation of V_2 , four adjacent elements in the upper and lower sides represent an hyperedge. Based on the above symbols,

(1	2	3	4	5	6	7) (1 2	2 3	4	5	6	7	(1	2	3	4	5	6	7
$(\bar{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	7), ($\overline{2}$ $\overline{3}$	3 4	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{1}$	$\sqrt{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{1}$	$\bar{2}$
(1	2	3	4	5	6	7) (1 2	2 3	4	5	6	7	(1	2	3	4	5	6	7
$\sqrt{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	$\overline{1}$	$\overline{2}$	$\overline{3}$, ($\overline{5}$ $\overline{6}$	$\bar{5}$ $\bar{7}$	$\overline{1}$	$\overline{2}$	$\bar{3}$	$\bar{4}$),	$\overline{6}$	$\overline{7}$	$\overline{1}$	$\overline{2}$	$\bar{3}$	$\overline{4}$	$\overline{5}$
(1	2	3	4	5	6	7) (1 3	5 5	7	2	4	6	(1	3	5	$\overline{7}$	2	4	6
$\sqrt{7}$	$\overline{1}$	$\overline{2}$	$\bar{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$, ($\overline{1}$ $\overline{3}$	$\overline{5}$	$\overline{7}$	$\overline{2}$	$\overline{4}$	$\overline{6}/$	$\sqrt{3}$	$\overline{5}$	$\overline{7}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	ĪĮ,
(1	3	5	7	2	4	6) (1 3	5 5	7	2	4	6	(1	3	5	7	2	4	6
$\overline{5}$	$\overline{7}$	$\overline{2}$	$\overline{4}$	$\overline{6}$	$\overline{1}$	$\bar{3}/, \langle$	$\overline{7}$ $\overline{2}$	2 4	$\overline{6}$	$\overline{1}$	$\bar{3}$	$\overline{5}$	$\sqrt{2}$	$\overline{4}$	$\overline{6}$	$\overline{1}$	$\bar{3}$	$\overline{5}$	$\overline{7}$
(1	3	5	7	2	4	6) (1 3	5 5	7	2	4	6	(1	4	7	3	6	2	5
$\sqrt{4}$	$\overline{6}$	ī	$\bar{3}$	$\overline{5}$	$\overline{7}$	$\bar{2}$), ($\overline{6}$ $\overline{1}$	3	$\overline{5}$	$\overline{7}$	$\overline{2}$	$\bar{4}$),	$\overline{1}$	$\overline{4}$	$\overline{7}$	$\bar{3}$	$\overline{6}$	$\overline{2}$	$\overline{5}/,$
$\left(\frac{1}{7}\right)$	4	$\frac{7}{2}$	$\frac{3}{\overline{a}}$	6 ā	2	$\left(\frac{5}{2}\right)$, (1 4 = 4	7	$\frac{3}{2}$	6	$\frac{2}{}$	$\left(\frac{5}{2}\right)$.	$\begin{pmatrix} 1 \\ \bar{a} \end{pmatrix}$	$\frac{4}{2}$	$\frac{7}{2}$	3	$\frac{6}{\overline{1}}$	$\frac{2}{1}$	$\left(\frac{5}{2}\right)$
$\begin{pmatrix} 4 \\ \end{pmatrix}$	7	3	6	2	5	1/	73		2	5	1	4)	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	6	2	5	1	4	7)
$\left(\frac{1}{6} \right)$	$\frac{4}{2}$	$\frac{7}{5}$	$\frac{3}{1}$	$\overline{4}$	$\frac{2}{7}$	$\left(\frac{5}{3}\right), \left(\right.$	$\frac{1}{2}$ $\frac{4}{5}$	$\frac{1}{5}$ $\frac{7}{1}$	$\frac{3}{4}$	$\overline{7}$	$\frac{2}{3}$	$\left(\frac{5}{6}\right),$	$\left(\frac{1}{5}\right)$	$\frac{4}{1}$	$\frac{7}{4}$	$\frac{3}{7}$	6 3	$\frac{2}{\overline{6}}$	$\left(\frac{5}{2}\right)$
C1		70			•	-/ \						- /	10			,	-	-	_/,

Are 21 cycles of length 7? We apply

we apply	1.											\mathbf{i}		
	$(i_1 i_1)$	l_2	i_3	\imath	4	i_5	i_6	;	i_7	•••	•••	•)		
	$\langle i_1 \rangle$	j2	j2	i	1	i_5	je		i_7			.)		
To express cycle of length 14.	Based of	n th	ne sv	/mb	ola	ibov	ze.	, .	,,			/		
i e enprese eyere er rengen i n	(1	2	4	5	7	1	3	4	6	$\overline{7}$	2	3	5	6)
	(ī	3	4	6	$\overline{7}$	$\overline{2}$	$\overline{3}$	5	$\overline{6}$	1	$\overline{2}$	4	$\overline{5}$	7)
	$\left(\frac{1}{2}\right)$	$\frac{2}{4}$	4 Ē	$\frac{5}{7}$	$\frac{7}{1}$	1	$\frac{3}{4}$	$\frac{4}{\bar{c}}$	$\frac{6}{7}$	$\frac{7}{5}$	$\frac{2}{2}$	3 ਵ	$\frac{5}{\overline{c}}$	$\left(\frac{6}{1}\right)$
	(2)	4	$\frac{5}{4}$	5	17	3 1	4	$\frac{6}{4}$	6	27	3 2	э З	5	$\frac{1}{6}$
	$(\hat{\overline{3}})$	$\overline{\overline{5}}$	$\overline{6}$	$\overline{1}$	$\overline{2}$	$\overline{4}$	$\overline{5}$	$\overline{\overline{7}}$	$\overline{1}$	$\overline{3}$	$\overline{\overline{4}}$	$\overline{6}$	$\overline{7}$	$\frac{3}{2}$
	(1)	$\frac{2}{2}$	$\frac{4}{-}$	5	$\overline{2}$	$\frac{1}{2}$	$\frac{3}{2}$	$\frac{4}{-}$	$\overline{6}$	$\overline{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{5}{2}$	$\stackrel{6}{=}$
	$\begin{pmatrix} 4 \\ \end{pmatrix}$	6	7	2	3	5	6	1	2	4	5	7	1	$\frac{3}{2}$
	$\left(\frac{1}{5}\right)$	$\frac{2}{7}$	$\frac{4}{1}$	о З	$\frac{i}{4}$	$\frac{1}{6}$	$\frac{3}{7}$	$\frac{4}{2}$	ю 3	$\frac{6}{5}$	$\frac{2}{6}$	3 1	$\frac{5}{2}$	$\left(\frac{6}{4}\right)$
	(1)	$\frac{1}{2}$	$\overline{5}$	6	$\hat{2}$	3	6	$\overline{7}$	3	$\overline{4}$	7	1	$\frac{-}{4}$	5
	(ī	$\overline{4}$	$\overline{5}$	$\overline{1}$	$\overline{2}$	$\overline{5}$	$\overline{6}$	$\overline{2}$	$\overline{3}$	$\overline{6}$	$\overline{7}$	$\bar{3}$	$\overline{4}$	7)
	$\left(\frac{1}{2}\right)$	2 Ē	5 ē	$\frac{6}{2}$	$\frac{2}{2}$	$\frac{3}{\overline{e}}$	$\frac{6}{7}$	$\frac{7}{2}$	$\frac{3}{4}$	$\frac{4}{7}$	$\frac{7}{1}$	$\frac{1}{4}$	4 Ē	$\left(\frac{5}{1}\right)$
	$(1)^{(2)}$	$\frac{3}{2}$	5	6	$\frac{3}{2}$	3	6	7	3	4	$\frac{1}{7}$	1	$\frac{3}{4}$	$\frac{1}{5}$
	$(\bar{3}$	$\overline{6}$	$\overline{7}$	$\bar{3}$	$\bar{4}$	$\overline{7}$	$\overline{1}$	$\overline{4}$	$\overline{5}$	$\overline{1}$	$\overline{2}$	$\overline{5}$	$\overline{6}$	$\overline{2})$
	$\left(\frac{1}{4}\right)$	2	5	$\frac{6}{4}$	2	$\frac{3}{1}$	6 ā	7	$\frac{3}{\overline{a}}$	4 ā	7	$\frac{1}{\overline{a}}$	4	$\left(\frac{5}{2}\right)$
	$\begin{pmatrix} 4 \\ 1 \end{pmatrix}$	7	1	$\frac{4}{7}$	5	1 5	2	5 3	6 7	2	3	6	7 3	$\frac{3}{4}$
	$\left(\frac{1}{1}\right)$	$\overline{\overline{5}}$	$\overline{6}$	$\frac{1}{3}$	$\frac{1}{4}$	$\overline{1}$	$\frac{2}{2}$	$\overline{6}$	$\frac{1}{7}$	$\frac{1}{4}$	$\overline{5}$	$\overline{2}$	$\overline{3}$	$\frac{1}{7}$
	$\left(\begin{array}{c} 1 \\ - \end{array} \right)$	2	6	7	4	5	2	3	7	$\frac{1}{2}$	5	6	3	$\left(\frac{4}{2}\right)$
	$\begin{pmatrix} 2\\ 1 \end{pmatrix}$	6	7	$\frac{4}{7}$	5 4	2	3	7	$\frac{1}{7}$	5	6 5	3 6	4	$\frac{1}{4}$
	$\left(\frac{1}{3}\right)$	$\frac{2}{7}$	$\overline{1}$	$\frac{i}{5}$	$\frac{4}{6}$	$\frac{3}{3}$	$\frac{2}{\overline{4}}$	$\frac{3}{1}$	$\frac{i}{2}$	$\frac{1}{6}$	$\frac{5}{7}$	$\overline{4}$	э 5	$(\frac{4}{2})$
	(1)	2	7	1	6	7	5	6	4	5	3	4	2	3
	$\overline{1}$	6	7	$\overline{5}$	$\overline{6}$	$\overline{4}$	5	3	$\overline{4}$	$\overline{2}$	3	ī	$\overline{2}$	7)
	$\left(\begin{array}{c}1\\-\end{array}\right)$	2	7	1	6	7	5	6	4	5	3	4	2	$\frac{3}{-}$
	$\backslash 2$	7	1	6	7	5	6	4	5	3	4	2	3	1)
	(1)	3	6	1	4	6	2	4	7	2	5	7	3	5
	$\overline{1}$	$\overline{4}$	$\overline{6}$	$\overline{2}$	$\overline{4}$	$\overline{7}$	$\overline{2}$	$\overline{5}$	$\overline{7}$	$\bar{3}$	$\overline{5}$	ī	$\bar{3}$	$\overline{6}$
	(1)	3	6	1	4	6	2	4	7	2	5	$\overline{7}$	3	5
	$\langle \bar{2}$	$\overline{5}$	$\overline{7}$	$\bar{3}$	$\overline{5}$	$\overline{1}$	$\bar{3}$	$\overline{6}$	$\overline{1}$	$\bar{4}$	$\overline{6}$	$\overline{2}$	$\bar{4}$	7)
	(1)	3	6	1	4	6	2	4	7	2	5	$\overline{7}$	3	5
	$(\bar{3}$	$\overline{6}$	ī	$\overline{4}$	$\overline{6}$	$\overline{2}$	$\bar{4}$	$\overline{7}$	$\overline{2}$	$\overline{5}$	$\overline{7}$	$\bar{3}$	$\overline{5}$	$\overline{1}$
	$\hat{(1)}$	3	6	1	4	6	2	4	7	2	5	7	3	5
	$\left(\frac{1}{4}\right)$	$\overline{\overline{7}}$	$\overline{2}$	$\overline{\overline{5}}$	$\overline{\overline{7}}$	$\tilde{\overline{3}}$	$\overline{\overline{5}}$	ī	$\overline{3}$	$\overline{6}$	ī	4	$\tilde{\overline{6}}$	$\frac{\tilde{2}}{2}$
	(1	२	7	$\tilde{2}$	6	1	5	7	1	6	3	5	2	-) 4)
	$\left(\begin{array}{c}1\\\overline{1}\end{array}\right)$	5	$\frac{1}{7}$	$\overline{\overline{4}}$	<u>6</u>	$\frac{1}{3}$	5	$\frac{1}{2}$	$\overline{4}$	ī	3	$\overline{7}$	$\tilde{\overline{2}}$	$\left(\overline{6} \right)$
	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	2	7	- - -	6	1	5	7	1	6	2	۲ ۲	2	4)
	$\begin{pmatrix} 1\\ \overline{2} \end{pmatrix}$	5 ह	$\frac{1}{1}$	A E	5	$\frac{1}{\Lambda}$	ē	1 5	4 E	0 5	3 7	1	⊿ う	-+
	$\sum_{i=1}^{2}$	0	1	0	í C	4	5	3	0	2	4	T	3	1
	$\left(\begin{array}{c}1\\\overline{a}\end{array}\right)$	3	7	2	6	1	5		4	6 ē	3	b ē	2	$(\frac{4}{\pi})$
	$\setminus 3$	7	2	6	1	5	7	4	6	3	5	2	4	1/

Are 21 cycles of length 14? It is easy to verify for any two cycles above, there is no common hyperedge between these two cycles. Furthermore, $|K_{7,7}^4| = 2\binom{7}{3}\binom{7}{1} + \binom{7}{2}\binom{7}{2} =$

 $[(2\times35)\times7]+[(21\times7)+(21\times14)]$, where the parentheses in the first parenthesis is the number of cycles of length 7 for type 1, two 21 of second parentheses are the numbers of cycles of length 7, 14 for type 2 respectively.

We have completed the decomposition of hypergraphs $K_{7,7}^4$.

Acknowledgement: This work is supported by Inner Mongolia University for Nationalities Research Funded Project (NMDYB17155) and National Natural Science Foundation of China (912067).

References

- [1]. C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1979).
- [2]. J. C. Bermond, Hamiltonian decompositions of graphs, directed graphs and hypergraphs, Ann. Discrete Math. 3 (1978) 21-28.
- [3]. H. Verrall, Hamilton decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994) 333-348
- [4]. Jian-fang Wang, the theoretical base of hypergraphs(in Chinese), Beijing: Higher Education Press, 2006, 7
- [5]. Ronald Fagin, Degrees of Acyclicity for Hypergraphs and Relational Database Schemes, Journal of the Assoeiauon for Computing Machinery, Vol 30, No 3, 1983,7: 514-550
- [6]. Duchet, P. Hypergraphs, Handbook of Combinatorics. The MIT Press, 381-423, 1995
- [7]. Jian-fang Wang, The Information Hypergraph Theory, Beijing: Science Press, 2008