EPH - International Journal of Mathematics and Statistics

ISSN (Online): 2208-2212 Volume 4 Issue 2 September 2018

DOI:https://doi.org/10.53555/eijms.v4i2.22

FERMAT'S LAST THEOREM IS EQUIVALENT TOBEAL'S CONJECTURE

James E. Joseph^{1*} & Bhamini M.P. Nayar²

*Corresponding Author:-

Abstract:-

It is proved in this paper that (1) Fermat's Last Theorem: If π is an odd prime, there are no relatively prime positive integers x,y,z satisfying the equation $z^{\pi} = x^{\pi} + y^{\pi}$, and (2) Beal's Conjecture : The equation $z^{\xi} = x^{\mu} + y^{\nu}$ has no solution in relatively prime positive integers x,y,z with μ, ξ and ν odd primes at least 3. It is also proved that these two statements, (1) and (2), are equivalent.

- (1) (Fermat's Last Theorem): If π is an odd prime, there are no relatively prime positive integers x, y, z satisfying the equation $z^{\pi} = x^{\pi} + y^{\pi}$,
- (2) (Beal's conjecture:) The equation $z^{\xi} = x^{\mu} + y^{\nu}$ has no solution in relatively prime positive integers x, y, z with μ, ξ and ν odd primes at least 3.

See [1], [2] and [3] for history of these problems.

First, the proof of (1). To prove that, if π is an odd prime, then $z^{\pi} \neq x^{\pi} + y^{\pi}$ for relatively prime positive positive integers x, y, z. Edwards [1] has proved that $z^4 \neq x^4 + y^4$ for relatively prime positive integers x, y and z.

Suppose $z^{\pi} = x^{\pi} + y^{\pi}$ for relatively prime positive integers x, y, z.

We claim the following:

$$x + y - z \equiv 0 \pmod{\pi},$$

And

$$(x+y)^{\pi} - Zp \equiv 0 \pmod{\pi^2}$$

To prove the above claims:

Note that by expanding $(x + y - z)^{\pi}$ using binomial expansion,

$$(x+y-z)^{\pi} - ((x+y)^{\pi} - z^{\pi}) = {}^{X}C(\pi, k) (x+y)^{\pi-k} (-z)^{k},$$

$$k=1$$
(1)

2010 Mathematics Subject Classification. Primary 11Yxx.

Key words and phrases. Fermat Last Theorem, Beal conjecture Conjecture. 1

2 FERMA-BEAL

Again, using binomial expansions for $(x + y)^{\pi}$ and $((x + y - z) + z)^{\pi}$, we have,

 $(x + y)^{\pi} - Zp - (x + y - z)^{\pi} \equiv 0 \pmod{\pi}.$ (2) The right hand side of equation (2) is divisible by π and hence the left hand side is divisible by π . The expansion of $(x + y)^{\pi} - Zp$ shows that $(x + y)^{\pi} - Zp$ is divisible by π and hence $(x + y - z)^{\pi}$ is divisible by π . Thus

$$x + y - z \equiv 0 \pmod{\pi}.$$
 (3)

So, $(x + y - z)^{\pi} \equiv 0 \pmod{\pi^{\pi}};$ And

 $(x+y)^{\pi} - Zp \equiv 0 \pmod{\pi^2}$. (4) In view of equations (3) and (4), equation (1) gives that

 $z \equiv 0 \pmod{\pi} \tag{5}$

and

$$x+y\equiv 0 \pmod{\pi}.$$

(6)

Hence, in view of equation
$$(3)$$
,

$$z^{\pi} - x^{\pi} - y^{\pi} = (x+y)^{\kappa} - x^{\pi} - y^{\pi}$$
$$= \sum_{k=1}^{\pi-1} C(\pi,k) x^{\pi-k} y^{k} \equiv 0 \pmod{\pi^{\pi}}.$$
 (7)

So,

 $y \equiv 0 \pmod{\pi} \tag{8}$

and

$$x \equiv 0 \pmod{\pi} \tag{9}$$

Thus we get $x \equiv 0 \pmod{\pi}$, $y \equiv 0 \pmod{\pi}$ and $z \equiv 0 \pmod{\pi}$. Hence *x*, *y*, *z* are not relatively prime and thus the proof of Fermat's Last Theorem. Now, consider **Beal's conjecture.** Assume Fermat's Last Theorem and let

 $\xi, \mu, \nu, \geq 3.$

FERMA-BEAL

Then, $(z^{\xi})^{\pi} 6 = (x^{\mu})^{\pi} + (y^{\nu})^{\pi}$ Suppose that $z^{\xi} = x^{\mu} + y^{\nu}$, for any *x*, *y* and *z*.

Then $(z^{\xi})^{\xi} = (x^{\xi})^{\mu} + (y^{\xi})^{\nu}$, replacing *x*, *y* and *z* with x^{ξ}, y^{ξ} and z^{ξ} . Hence $(z^{\xi})^{\xi} = (x^{\mu})^{\xi} + (v^{\nu})^{\xi}$. As in the proof of Fermat's Last Theorem, it can be shown that each x^{μ}, y^{ν} and z^{ξ} is divisible by ξ . Therefore, each *x*, *y* and *z* is divisible by ξ , which implies that *x*, *y* and *z* are not relatively prime. Thus Fermat's Last Theorem implies Beal's conjecture. For the converse, take, $\xi = \mu = \nu = \pi$, an odd prime. Thus the proof of the equivalence is complete.

REFERENCES

- [1]. Edwards, H. (1977). Fermat's Last Theorem: A Genetic Introduction to Algebraic Number Theory, Springer-Verlag, New York.
- [2]. Wiles, A. (1995). Modular ellipic eurves and Fermat's Last Theorem, Ann. Math. 141, 443-551.
- [3]. Wiles, A. and Taylor, R. (1995). Ring-theoretic properties of certain Heche algebras, Ann. Math. 141, 553-573.