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Abstract:-
This paper mainly studies the order statistics of geometric distribution. The paper deduces the joint frequency function  
and  conditional  joint  frequency  function  of  the  order  statistics,  and,  obtain  and  prove  some  important propositions 
of order statistics of geometric distribution. Certain propositions are different from and also similar to corresponding 
propositions of exponential distribution.
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I.  INTRODUCTION
Geometric  distribution  has  already  been  applied  to  more  fields,  and  it  has  an  extremely  important  positionespecially  
in  some  fields  such  as  information  engineering,  electronic  engineering,  control  theory  and  economics.It is well
known that exponential distribution plays quite an important role in the statistical analysis of reliability.However in 
discrete life case, geometric distribution play the role of exponential distribution in continuous life case,so the study on 
geometric distribution becomes more and more important. [1] first proposed that the characteristicsof  geometric  
distribution  might  be  described  by  order  statistics.  [2]  made  the  further  study  on  order  statistics  ofgeometric 
distribution. [3] Obtained certain characterizations of exponential and geometric distributions. [4] studieda 
characterization of the geometric distribution. [5] Proved a characterization of the geometric distribution. [6] giveda note 
on characterizations of the geometric distribution. [7] Obtained some results for type i censored sampling fromgeometric 
distributions. [8] gived and proved two characterizations of geometric distributions. [9] Compared somecharacterizations 
of the geometric with exponential random variables. [10] Made statistical analysis for geometricdistribution based on 
records. [11] Got a generalization of the geometric distribution. [12] Gives a generalization ofgeometric distribution. [13] 
pvoved characterizations of the geometric distribution via residual lifetime.Although  both  geometric  distribution  and  
exponential  distribution  have  no  memory,  properties  of  their  orderstatistics  make  an obvious  difference  because  
of  their  individual  differences.  This paper obtains and proves somepropositions of order statistics of geometric 
distribution, and certain propositions are different from and also similarto corresponding propositions of exponential 
distribution.

II. THE RESULTS AND PROOFSA
random variableXis said to have a geometric distribution with parameterpif its frequency function isP(X=k) =pqk−1fork= 
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where0< p <1andq= 1−p. We will sometimes writeX∼Geo(p).Suppose thatX1,···, Xnare i.i.d. geometric random 
variables. We arrangeXi’s in ascending order, and someofXi’s are taken as the same group whose values are equal. 
ThereforeXi’s are divided into finite group. Then wedefineYito be the number of variables included by thei-th group 
andX(i)the common value of thei-th grouprandom variables with16i6n. LetDi=X (i) −X (i−1) withX (0) = 0.
Proposition 1: Based on above symbols defined, the following are consequence ofXi’s:
(i) The joint frequency function ofX(1), X(2),···, X(r)is
P(X(1)=k1,X(2)=k2,···,X(r)=kr)(r∑i=1pki+  ̃pkr)n−∑16i1<i2<···<ir−16r(r−1∑j=1pkij+  ̃pkr)n−∑16i1<i2<···<ir−26r(r−
2∑j=1pkij+  ̃pkr)n,(2)wherepki=P(X=ki)and ̃pkr=P(X>kr), ifr=n, then ̃pkr= 0, and16k16k2···6kr.
(ii) ConditionalY1=m1, Y2=m2,···, Yr−1=mr−1,
Dr∼Geo(1−qn−m1−···−mr−1),wherem1+m2+···+mr−16n−1.
(iii) ConditionalY1=m1, Y2=m2,···, Yr−1=mr−1, the frequency function ofYrisP(Yr=mr|Y1=m1,···, Yr−1=mr−1) 
=(n−m1−···−mr−1mr)(pq)mrqn−m1−···−mr−11−qn−m1−···−mr−1, (3)
wherem1+m2+···+mr6n.
(iv)  ConditionalY1=m1,···, Yr−2=mr−2, Xr−1=kr−1, Yr−1=mr−1,  variablesX(r)andYrare  indepen-dent.
(v) YrisP(Y1=m1,··Y2,···,ofY1,functionfrequencyjointThe Yr=mr)·,
=n!m1!···mr+1!p∑ri=1miqn+(n−m1)+···+(n−m1−···−mr−1)−∑ri=1mi(1−qn)(1−qn−m1)···(1−qn−m1−···−mr−1),(4)es
peciallyP(Xi6=Xjfori6=j, i, j= 1,2,···, n) =n!pnqn(n−12n∏i=111−qi. (5)
(vi) ConditionalY1=m1,···, Yr=mr, variablesD1,···, Drare independent andDi∼Geo(1−qn−m1−···−mi−1), i= 1,2,···, 
r,especially conditionalXi6=Xj(i6=j, i, j= 1,2,···, n),Di∼Geo(1−qn−i+1), i= 1,2,···, n.Proof:(i) For convenience, we can 
define the eventsB=the values ofXi’s are onlyk1,···, kror more thankr,Ci=at least one ofXi’s takes valueki,
wherei= 1,···, N.
Set Ai=BCiwithi= 1, ···, N. It is easy to check that

Ai=the values ofXi’s are onlyk1, ···, ki−1, ki+1, ···, kror more thankr.
By applying properties of probability and combinatorial arguments, it follows that
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III. CONCLUSION
The current work concerns the order statistics of geometric distribution.  The joint frequency function and conditional 
joint frequency function of the order statistics has been obtained by applying properties of probability and combinatorial 
arguments. Severl propositions of order statistics are very fresh, interesting and attractive. Results indicate that certain 
propositions are different from and also similar to corresponding propositions of exponential distribution. According  to  
the theoretical conclusions of  this  paper,  further  topics  will  include  the  parameter estimation on the basis of observation 
data.
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