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Abstract:-
After establishing a metric over the vector space of the bivariate random quantities which are the components of a generic 
quadruple divided random quantity I establish a metric over the vector space of the quadruple divided random quantities 
in order to show that a coherent prevision of a generic bivariate random quantity coincides with the notion of α-product. 
Therefore, metric properties of the notion of α-product mathematically characterize the notion of coherent prevision of a 
generic bivariate random quantity. I accept the principles of the theory of concordance into the domain of subjective 
probability for this reason. This acceptance is well-founded because the definition of concordance is implicit as well as 
the one of prevision of a random quantity and in particular of probability of an event. By considering quadruple divided 
random quantities I realize that the notion of coherent prevision of a generic bivariate random quantity can be used in 
order to obtain fundamental metric expressions of quadruple divided random quantities.
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1 INTRODUCTION
It is necessary to distinguish logical aspects from the psychological ones related to random quantities. This distinction is 
methodologically fundamental ([6]). Logical aspects pertain the logic of certainty as well as the logic of the probable. 
They are dealt with by mathematics. The logic of certainty does not use the notion of probability ([8]). It is called so for 
this reason. What is objectively possible belongs to the logic of certainty and it is different from what is subjectively 
probable. It makes sense to express one’s subjective and non-predetermined opinion in terms of probability only in respect 
of what is possible or uncertain at a given instant. One always means uncertainty as a simple ignorance: it ceases only 
when one receives certain information. The logic of certainty is always characterized by two different and extreme 
aspects. The first aspect is negative because it deals with situations of non-knowledge or ignorance or uncertainty from 
which one determines the set of the possible alternatives of a random quantity: when a given numerical value is not either 
certain or impossible it is possible and it consequently belongs to such a set. The second aspect is positive because it deals
with the definitive certainty expressed in the form of what is certainly true or certainly false. Every possible numerical 
value of a random quantity definitively becomes 0 or 1 when an empirical observation, referring to it, is made. Therefore, 
into the logic of certainty exist certain and impossible and possible regarding to the first aspect, true = 1 and false = 0 as 
final answers regarding to the second aspect. Conversely, the notion of probability is of interest to an intermediate aspect 
which is included between the two extreme aspects characterizing the logic of certainty ([7], [9]). Indeed, the probability 
is distributed as a mass by a given individual over the domain of the possible alternatives before knowing which the true 
alternative to be verified is. This aspect is positive but it is weak and temporary because he is awaiting information which 
would give him the definitive certainty. Probability is an extralogical notion in the sense that it is outside of the logic of 
certainty ([12], [13]). The value of the notion of probability does not transcend the psychological value that such a notion 
has with regard to each individual. Moreover, the value of the notion of probability is not independent of such a 
psychological value. Therefore, a living, elastic and psychological logic is considered: it is exactly the logic of the 
probable. Probability calculus has a very special character in this conceptual context because common sense plays the 
most essential role and it is mathematically expressed as objective conditions of coherence ([15]).

2 A geometric representation of univariate random quantities
A univariate quantity X is really random for a given individual when he does not know its true numerical value. Therefore, 
he is in doubt between two or more than two possible values. These values belong to the set I(X) = {x1,...,xm}. Only one 
possible numerical value of I(X) will occur “a posteriori”. Each random quantity justifies itself “a priori”. Every finite 
partition of incompatible and exhaustive events representing a random quantity shows the possible ways in which a certain 
reality may be expressed. A multiplicity of possible values for every random quantity is only a formal construction that 
precedes the empirical observation by means of which a single value is realized among the ones of the set of the possible 
alternatives ([11]). Each event is a specific random quantity because it admits only two possible values. It does not admit 
more than two possible values like a random quantity. The same symbol P denotes both prevision of a random quantity 
and probability of an event ([14]). An event is conceptually a mental separation between sensations: it is actually a 
statement such that, by betting on it, one can establish in an unmistakable fashion whether it is true or false, that is to say, 
whether it has occurred or not and so whether the bet has been won or lost ([5]). It is not at all a logical restriction to 
consider finite partitions of incompatible and exhaustive events. If one wonders which is the event that will occur among 
an infinite number of them one can never verify if each statement representing a single event is true or false. These 
statements are infinite in number, so they do not coincide with any mental separation between sensations. Therefore, they 
are conceptually meaningless. I denote by (1) S a set of univariate random quantities. Every random quantity belonging to 
the set (1) S can be represented by a vector x ∈ Em, where Em is a vector space m-dimensional over the field R of real 
numbers. It has a Euclidean structure. The different possible values of every random quantity of (1) S are m in number, 
where m is an integer. It turns out to be (1) S ⊆ Em. The different possible values of X belonging to the set I(X) coincide 
with the different components of x and they can indifferently be denoted by a covariant or contravariant notation after 
choosing an orthonormal basis of Em. Such a basis is given by {ej}, j = 1, m. I should exactly speak of components of x 
having upper indices or lower indices because I deal with an orthonormal basis of Em. Indeed, the usage of the terms 
covariant and contravariant is geometrically meaningless because the covariant components of x coincide with the 
contravariant ones. Nevertheless, it is appropriate the usage of this notation referring to them because a specific meaning 
regarding to them will be introduced. Having said that I will continue to use these terms. Thus, I choose a contravariant 
notation with respect to the components of x so it is possible to write x = (xi) while I choose a covariant notation with 
respect to the components of p so it is possible to write p = (pi), where pi represents a subjective probability assigned to 
xi, i = 1,..., m, by a given individual at a given instant and with a certain set of information. Hence, different individuals 
whose state of knowledge is hypothetically identical may choose different pi because each of them may subjectively give 
greater attention to certain circumstances than to others ([10]). A given individual is into the domain of the logic of 
certainty when he considers only x ∈ Em while he is into the domain of the logic of the probable when he considers an 
ordered pair of vectors. It is expressed by (x,p) ⊆ Em. Thus, a prevision of X is given by

P(X) = X¯ = xipi, (1)

Where I imply the Einstein summation convention. This prevision is coherent when one has 0 ≤ pi ≤ 1, i = 1,...,m, as well 

as 1 ([1]). This implies that a coherent prevision of X always satisfies the inequality infI(X) ≤ P(X) ≤ supI(X) 
and it is also linear, that is to say, one has P(aX +bY +cZ+...) = aP(X)+bP(Y)+cP(Z)+... for any finite number of univariate
random quantities, with a, b, c, ... any real numbers. In particular, from P(X +Y) = P(X)+P(Y) follows an additivity property
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of P. A coherent prevision of X can be expressed by means of the vector x¯ = (x¯i) that allows to define the transformed 
random quantity Xt: it is represented by the vector xt = x−x¯ whose contravariant components are given by

xti = xi −x¯i. (2)
This linear transformation of X is a change of origin or translation. A coherent prevision of the transformed random 
quantity Xt is necessarily given by

P (Xt) = (xi −x¯i) pi = 0.

The α-norm of the vector x is expressed by

(3)

. (4)

It is the square of the quadratic mean of X. It turns out to be 0. In particular, one writes 0 when the possible 
values of X are all null: this is a degenerate case. Hence, one says that the α-norm of the vector x is strictly positive. The 
α-norm of the vector representing Xt is given by

. (5)

It represents the variance of X in a vectorial fashion. I will later explain why I use the term α-norm.

3 A geometric representation of bivariate random quantities
I denote by (2) S(2) a set of bivariate random quantities and by X12 ≡ {1X,2X} a generic bivariate random quantity of this set. 
A pair of univariate random quantities (1X,

2X) evidently represents an ordered pair of univariate random quantities which 
are the components of X12. Each element of (2) S (2) can be represented by an affine tensor of order

2 denoted by T Em. Therefore, the possible values of X12 coincide with the numerical values of the 
components of T. The dimension of Em as well as the number of the different possible values of every univariate random 
quantity of X12 is expressed by m. Thus, T is an element of a vector space m2-dimensional. Moreover, it turns out to be 

(2)S(2) ⊆ Em
(2). I choose an orthonormal basis of Em in order to represent the possible values of X12. These values coincide 

with the contravariant components of T so it is possible to write

The tensor representation of X12 expressed by (6) depends on (1X,2X). Indeed, if one considers a different ordered pair (2X,
1X) of univariate random quantities one obtains a different tensor representation of X12 expressed by

Because the tensor product is not commutative ([22], [23]). Therefore, the components of T expressed by (7) are not the 
same of the ones expressed by (6). Both these formulas express an affine tensor of order 2 whose components are different. 
I have consequently (1)x ⊗(2)x 6= (2)x ⊗(1)x. I must at the same time consider (6) and (7) in order to release a tensor 
representation of X12 from any ordered pair of univariate random quantities which can be considered, (1X,2X) or (2X,1X). 
This means that the possible values of a bivariate random quantity must be expressed by the components of an 
antisymmetric tensor of order 2. It is expressed by

The number of the components of an antisymmetric tensor of order 2 is evidently different from the one of the components
of an affine tensor of the same order. Thus, a tensor representation based on an antisymmetric tensor of order 2 does not 
depend either on (1X,2X) or (2X,1X). I choose it in order to represent a generic bivariate random quantity X12. Therefore, 12 

f is an antisymmetric tensor of order 2 called the tensor of the possible values of X12. The contravariant components of 12 

f expressed by

(9)
Represent the possible values of X12 in a tensorial fashion. These components are equal to 0 when they have equal indices. 
It is evident that the vector space of the antisymmetric tensors of order 2 does not have a dimension equal to m2 but it has 
a dimension equal to m

2. Now, I must introduce the probabilities into this geometric representation of X12. It is possible to 
say that the tensor of the joint probabilities p = (pi1i2) is an affine tensor of order 2 whose covariant components represent 
those probabilities related to the ordered pairs of components of  vectors representing the  marginal univariate random 
quantities 1X and 2X of X12. In order to define the covariant components of 12 f I must consider those vector homographies 
that allow me to pass from the contravariant components of a type of vector to the covariant components of another type
of vector by means of the tensor of the joint probabilities under consideration. Indeed, the covariant components of 12 f
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represent those probabilities related to the possible values of each marginal univariate random quantity of X12. These 
components are obtained by summing the probabilities related to the ordered pairs of components of (1)x and (2)x: putting 
the joint probabilities into a two-way table I consider the totals of each row and the totals of each column of the table as 
covariant components of 12 f . In analytic terms one has (1)xi1pi1i2 = (1)xi2 and (2)xi2pi1i2 = (2)xi1 by virtue of a specific 
convention that I introduce: when the covariant indices to right-hand side vary over all their possible values I obtain two 
sequences of values representing those probabilities related to the possible values of each marginal univariate random 
quantity of X12. They are the covariant components of 12 f . It turns out to be

The covariant indices of the tensor p can be interchanged when it is necessary so one has, for instance,

4 An essential metric of univariate random quantities
The vector space of univariate random quantities which are the components of bivariate random quantities is denoted by 

(2) S(1) ⊆ Em. These univariate random quantities are represented by two vectors, (1)x and 
(2)x, belonging to Em. I deal with 

two ordered mtuples of real numbers when I am into the objective domain of the possible alternatives. An affine tensor p 
of order 2 must be added to the two vectors under consideration when I pass from the domain of the possible alternatives 
to the one of the evaluation of probabilities. Therefore, I always consider a triple of elements. I transform the vector x 
into the vector x0 by means of the tensor p. Hence, it is possible to write the following dot product

is a vector homography whose expressions are obtained by applying the Einstein summation convention. Then, the α-
product of two vectors, (1) x and (2)x, is defined as a dot product of two vectors, (1)x and (2)x0, so I write

. (13)
In particular, the α-norm of the vector (1)x is given by

. (14)
I use the term α-norm because I refer to the α-criterion of concordance introduced by Gini ([24], [25]). There actually 
exist different criteria of concordance shown by Gini in addition to the α-criterion. Nevertheless, by considering quadratic 
measures of concordance it always suffices to use the α-criterion. When I pass from the notion of α-product to the one of 
α-norm I say that the corresponding possible values of the two univariate random quantities under consideration are equal. 
I also say that the corresponding probabilities are equal. Therefore, the covariant components of the tensor p = (pi1i2) 
having different numerical values as indices are null. Thus, I say that the absolute maximum of concordance is realized. 
Given the vector y = (1)x +λ(2)x, with λ ∈ R, its α-norm is expressed by

. (15)

It is always possible to write 0. Moreover, the right-hand side of (15) is a quadratic trinomial whose variable is λ, 

so I must consider a quadratic inequation. All real numbers fulfill the condition stated in the form 0. This means 
that the discriminant of the associated quadratic equation is non-positive. I write

.
Given ∆λ ≤ 0, it turns out to be

,
so I obtain

. (16)
The expression (16) is called the Schwarz’s α-generalized inequality. When λ = 1 one has y = (1)x +(2)x. By replacing 

into (15) with k
(1)xkα

k
(2)xkα one has the square of a binomial given by

,
so one obtains
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The expression (17) is called the α-triangle inequality. Dividing by both sides of (16) one has

,
that is to say,

so there exists a unique angle γ such that 0 ≤ γ ≤ π and such that

It is possible to define this angle to be the angle between the two vectors (1)x and (2)x.
By considering the expression (13) it is also possible to define it to be the angle between (1)x and (2)x’.

5 An essential metric of bivariate random quantities
I deal with the vector space denoted by (2)S(2)∧ whose elements are antisymmetric tensors of order 2. Nevertheless, by 
introducing the notion of α-product of two antisymmetric tensors of order 2 I must underline a very important point: it is 
not necessary to refer to the bivariate random quantity X12 in order to introduce that antisymmetric tensor whose covariant 
components are represented like into the expression (10). Therefore, it is also possible to consider a bivariate random 
quantity denoted by X34 as well as an antisymmetric tensor of order 2 denoted by 34 f whose covariant components are 
expressed by

Thus, it is possible to extend to the antisymmetric tensors 12 f and 34 f the notion of α-product. This means that one can 
examine the domain of the possible alternatives in a more complete fashion ([16]). Then, one has

where it appears because one has always two permutations into the two determinants: one of these permutations is 
“good” when it turns out to be i1 < i2 regarding to (1)xi1

(2)xi2 and (3)xi1(4)xi2 while the other is “no good” because it turns out 

to be i2 > i1 regarding to (1)xi2
(2)xi1 and (3)xi2(4)xi1. Hence, I am in need of returning to normality by means of . Such a 

normality is evidently represented by i1 < i2. I need different affine tensors of order 2 in order to make a calculation given 
by the expression (20). These tensors of the joint probabilities allow me of defining the bivariate random quantities X13, 
X14, X23 and X24. Thus, one has

In particular, the α-norm of the tensor 12 f is given by

, (22)
so it turns out to be

Anyway, it is always possible to write

The α-norm of the tensor 12 f is again strictly positive. It is equal to 0 when the components of 12 f are all null and when 
one can write (1)x = λ(2)x, with λ ∈ R. I define the tensor f as a linear combination of 12 f and 34 f such that I can write f = 12 

f +λ34 f , with λ ∈ R. Then, the Schwarz’s α-generalized inequality becomes
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Theα-triangle inequality becomes

While the cosine of the angle γ becomes

6. A new meaning of the notion of coherent prevision of a generic bivariate random quantity
The notion of α-product depends on three elements which are two vectors of Em, (1)x and (2)x, and one affine tensor p = 
(pi1i2) of order 2 belonging to Em

(2) = Em ⊗Em. Given any ordered pair of vectors, p is uniquely determined as a geometric 
object. This implies that each covariant component of p is always a subjective probability. It must intrinsically be coherent 
([4]). With regard to some problem that may be considered it is possible that all reasonable people share each covariant 
component of p. Nevertheless, an opinion in terms of probability shared by many people always remains a subjective 
opinion. It is meaningless to say that it is objectively exact. Indeed, a sum of many subjective opinions in terms of 
probability can never lead to an objectively correct conclusion ([3]). Thus, given a bivariate random quantity X12 ≡ {1X,

2X}, 
its coherent prevision P(X12) is an α-product whose metric properties remain unchanged by extending them to P. 
Therefore, P is a α-commutative prevision because it is possible to write

P(1X2X) = P(2X1X),
P is an α-associative prevision because it is possible to write

(29)

P[(λ1X)2X] = P[1X(λ2X)] = λP(1X2X), ∀λ ∈ R,
P is an α-distributive prevision because it is possible to write

(30)

P[(1X+2X)3X] = P(1X3X)+P(2X3X).
Moreover, when one writes

(31)

P(1X2X) = P(2X1X) = 0, (32)

And all possible values of 1X and 2X are not null, one says that 1X and 2X are α- orthogonal univariate random quantities. 
In particular, one observes that the α-distributive property of prevision implies that the covariant components of the affine 
tensor p (13) are equal to the ones of the affine tensor p (23). Moreover, the covariant components of the affine tensor related 
to the two univariate random quantities 1X+2X and 3X are the same of the ones of p (13) and p (23). By considering a bivariate 
random  quantity  one  finally  says  that  its  prevision  P  is  bilinear.  If  the  possible  values  of the  two  univariate  random 
quantities of X12 ≡ {1X,

2X} are correspondingly equal and the covariant components of the tensor p = (pi1i2) having different 
numerical values as indices are null, then P(X12) = P(1X2X) = P(2X1X) coincides with the α-norm of (1)x = (2)x. If P(X12) is 
a coherent prevision of X12 ≡ {1X,2X}, then its univariate random quantities, 1X and 2X, represent two separate and finite 
partitions  of  incompatible  and  exhaustive  events  whose  non-negative  probabilities  sum  to  1.  These  are  objective 
conditions of coherence ([2], [19], [20]). It is evident that each covariant component of p = (pi1i2) represents a probability 
of the joint of two events which includes a conditional probability of an event given the other. Hence, by denoting by A
one of the  possible values of 1X and by B one  of  the possible  values of 2X it  turns out to be  P(A∧B)  = P(A)P(B|A)  = 
P(B)P(A|B), with A∧B = B∧A, as regards each covariant component of p ([17], [18], [21]). I denoted by A∧B = B∧A the 
logical product of two events while I considered P (A∧B) as a probability of their joint. In general, from the notion of 
conditional  probability  denoted  by  P(E|H) it  is  always  possible  to  deduce  that  the  notion  of  subjective  probability  is 
relative to the current state of information of a given individual represented by H. This operationally means that P(E|H)
is the price to be paid for a conditional bet which is annulled if H does not occur. Conversely, this conditional bet is won 
if H and E occur while it is lost if H occurs and E does not occur. I evidently considered a tri-event denoted by E|H with 
values 1|1 = 1, 0|1 = 0, 0|0 = 1|0 = 0/ into the logic of certainty. It represents only a formal variation with respect to the 
starting delimitation because 0/ = void is added to the two starting values 1 = true and 0 = false. Any tri-event can always 
be expressed by means of two events from a conceptual point of view. This means that all tri-events are only formally 
meaningful. Given a transformed bivariate random quantity X12t ≡ {1Xt, 2Xt}, its coherent prevision P(X12t) is again an
α-product whose metric properties remain unchanged by extending them to P. In particular, when it turns out to be pi1i2 =
pi1pi2, ∀i1,i2 ∈ Im, with Im ≡ {1,2,...,m}, one observes that a stochastic independence exists. Hence, one obtains P (X12t) = 
0, that is to say, the vectors (1)t and (2)t are α-orthogonal. One equivalently says that the covariance of 1X and 2X is equal 
to 0.

7. A quadruple divided random quantity
In general a quadruple random quantity always consists of four univariate random quantities. The number of the possible 
distinct values of each univariate random quantity is again equal to m, where m is now an integer ≥ 4. Nevertheless, a 
quadruple  divided random  quantity  always consists  of two bivariate  random quantities  denoted  by X12 and X34 in  this

context. I precisely denote by X a quadruple divided random quantity. I actually deal with six bivariate 
random quantities denoted by X12, X13, X14, X23, X24 and X34 but two of these six bivariate random quantities, X12 and X34, 
play a different logical role in relation to the one played by X13, X14, X23 and X24.
I must consequently consider six affine tensors of order 2 denoted by p(12), p(13), p(14), p(23), p(24) and p(34): they are the
tensors of the joint probabilities whose covariant components represent those probabilities related to the ordered pairs of
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components of vectors representing the marginal univariate random quantities of each bivariate random quantity under 
consideration. There exist different cases justifying an interest in this type of random quantity. For instance, it is possible 
to examine two bivariate random quantities like a shot. The first bivariate random quantity is X12 ≡ {1X,

2X} and it is related 
to a given individual, where 1X represents a univariate random quantity whose possible values are his assets while 2X 
represents a univariate random quantity whose possible values are his incomes. The second bivariate random quantity is 
X34 ≡ {3X,4X} and it is related to another individual, where 3X represents a univariate random quantity whose possible 
values are again his assets while 4X represents a univariate random quantity whose possible values are again his incomes. 
After considering p(12) and p(34) I am able to measure any quantitative difference between 1X and 3X. Anyway, such a 
difference can also depend on relationships between 1X, 3X and 2X, 4X. Moreover, by considering p(14) related to X14 and 
p(23) related to X23 I can suppose that X12 and X34 are two bivariate random quantities such that it turns out to be 2X = 4X. 
Thus, it is evident that it is possible to examine assets of the two individuals under consideration in a more meaningful 
fashion. By supposing that X12 and X34 are two bivariate random quantities such that it turns out to be 1X = 

3X one realizes 
that to examine all six bivariate random quantities denoted by X12, X13, X14, X23, X24 and X34 is then justified.

8. A geometric representation of a quadruple divided random quantity

The components of X are always two autonomous bivariate random quantities. Each bivariate random 
quantity is geometrically represented by an antisymmetric tensor of order 2 belonging to (2)S(2)∧ ⊆ Em

(2)∧. Given an 
orthonormal basis of Em I must at first consider two affine tensors of order 2 expressed by

(2)

Where each tensor under consideration belongs to Em =Em ⊗Em, in order to represent the possible values of X

in a tensorial fashion. An antisymmetric tensor of order 2 representing X12 can always be written as

Where ei1 ∧ei2 = ε (i1i2) represents a basis of the vector space whose elements are antisymmetric tensors of order 2. 
Therefore, an antisymmetric tensor of the same order representing X34 can be expressed by

By considering at the same time (33), (34), (35) and (36) I obtain

As a tensorial representation of the possible values of . The same thing obviously goes when one 

considers X instead of X , so one obtains

When one has (i1i2) = (i3i4) it turns out to be

so I finally write

The tensor 12
34 f given by (40) is an antisymmetric tensor of order 2 whose contravariant components are expressed by

With i1 < i2, i3 < i4 as well as i1 < i3, i2 < i4. By denoting by (2)S∧(4) the vector space of the tensors representing quadruple 
divided random quantities one obtains (2)

S∧(4) = (2)S(2)∧ ∧
(2)S(2)∧. The dimension of this vector space is equal to m

4. After 
considering the tensors p (12) and p(34) which are related to the two bivariate random quantities X12 and X34 of X12

34 I can 
write the covariant components of the antisymmetric tensor representing a generic quadruple divided random quantity 
denoted by X12

34: they are given by

And they include four sequences of values: two sequences are related to 12 f while two sequences are related to 34 f . The
two  sequences  which  are  related  to 12 f represent  those  probabilities  related  to  the  possible  values  of  each  marginal
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univariate random quantity of X12 while the two sequences which are related to 34 f represent those probabilities related to 
the possible values of each marginal univariate random quantity of X34.

9. A metric of quadruple divided random quantities
A generic quadruple divided random quantity denoted by X12

34 is represented by an antisymmetric tensor of order 2 
denoted by 12

34 f and belonging to (2)
S∧(4). The notion of α-product implies that I am able to introduce another antisymmetric 

tensor of order 2 belonging to (2)S∧(4) and denoted by 56
78 f . This operationally means that I am able to study the domain 

of the possible alternatives in a more complete fashion. Therefore, a α-product between 12
34 f and 56

78 f is given by

I can also write

Given (44), it is possible to write

Given the two antisymmetric tensors 12
34 f and 56

78 f of order 2 belonging to (2)
S∧(4), it is possible to write an antisymmetric 

tensor of order 2 denoted by f as a linear combination of these two antisymmetric tensors so I obtain

f , (50)
While its α-norm is given by

. (51)
The Schwarz’s α-generalized inequality becomes

, (52)
The α-triangle inequality becomes

, (53)
While the cosine of the angle γ becomes

Now, I consider two transformed univariate random quantities which are respectively 1Xt and 2Xt. They are evidently 
related to X12. They are represented by the vectors (1)t and (2)t whose contravariant components are given by (1)ti = (1)xi 

−
(1)x¯i and (2)ti = (2)xi – (2)x¯i. Therefore, I introduce an antisymmetric tensor of order 2 denoted by 12t which characterizes 

the transformed bivariate random quantity denoted by X12t. Then, the contravariant components of this tensor are given 
by

Its covariant components are given by
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By introducing an antisymmetric tensor of order 2 denoted by 34t which characterizes the transformed bivariate random 
quantity denoted by X34t I obtain

A transformed random quantity related to a quadruple divided random quantity is represented by an antisymmetric tensor 
of order 2 denoted by 12

34t whose contravariant components are given by

Its covariant components are expressed by

Now, the Schwarz’s α-generalized inequality becomes

, (61)
The α-triangle inequality becomes

, (62)
While the cosine of the angle γ becomes

.(63)

10. Rewriting of some fundamental metric expressions and its reason
Now, it is possible to rewrite some fundamental metric expressions by using properly the notion of coherent prevision of 
bivariate random quantities that I introduced. Therefore, when one rewrites (24) and (25) it is possible to obtain

It is obviously possible to obtain similar results by rewriting (45), (46), (47), (48) and (49). On the other hand, it is known 
that any vector viewed as an element of a given vector space can always be expressed as a linear combination of the 
vectors representing a basis of the vector space under consideration. Hence, each linear combination is a division of a 
vector  into  those  vectors  representing  a  basis  of  the  vector  space  under  consideration.  An  analogous  thing  goes  by 
considering (64) as well as (65), where one observes that coherent previsions of separate bivariate random quantities are 
basic elements of the metric expressions under consideration. I evidently accept into the domain of subjective probability 
a  very  meaningful principle borrowed  from  geometry according to  which it is possible to divide a  more  complicated 
mathematical object into simpler mathematical objects represented by coherent previsions of bivariate random quantities 
in this context. Thus, it is possible to realize that a new and fruitful notion of coherent prevision of a generic bivariate 
random quantity is introduced. Moreover, the above principle is conceptually fulfilled by considering systematically all 
marginal univariate random quantities into a generic bivariate random quantity. A very important point must finally be 
stressed: the notion of coherent prevision of a univariate or bivariate random quantity is not a mathematical convention. 
It is an indirect mathematical notion because its foundation is the notion of prevision of the same random quantity which 
is always a psychological notion in the first instance. I show a geometric approach which does not introduce arbitrary
mathematical conventions but it makes more important the distinction between an extralogical or psychological notion
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and a logic or mathematical notion which is nevertheless intrinsically connected to the former. According to such 
mathematical conventions it would be possible to give a uniquely determined answer to an indeterminate problem because 
of its data which are incomplete because they are only able to establish certain limits or boundaries. These conventions 
must not be accepted for this reason.

11. Conclusions
I accepted the principles of the theory of concordance into the domain of subjective probability. This acceptance is well-
founded because the definition of concordance shown by Gini is implicit as well as the one of prevision of a random 
quantity and in particular of probability of an event. Indeed, these definitions are based on criteria which permit to measure 
them. I represented bivariate and quadruple divided random quantities in a tensorial fashion. I observed that metric 
properties of the notion of αproduct mathematically fulfill the ones of a coherent prevision of a generic bivariate random 
quantity. This geometric approach that I show is useful because it is possible to examine in a more complete fashion the 
domain of the possible alternatives by extending the notion of α-product to two different antisymmetric tensors of the 
same order. Indeed, with regard to any problem that one has to consider, there always exists an enormous number of 
possible alternatives. If information and knowledge of a given individual do not permit him to exclude some of them as 
impossible then all alternatives which can logically be considered remain possible for him in the sense that they are not 
either certainly true or certainly false. In particular, this means that it is possible to consider different bivariate and 
quadruple divided random quantities in addition to the starting ones. This tensorial approach allows of representing a 
bivariate random quantity regardless of any ordered pair of univariate random quantities which are the components of the 
bivariate random quantity under consideration. Of course, it also allows of representing a quadruple divided random 
quantity regardless of any ordered pair of bivariate random quantities which are the components of the quadruple divided 
random quantity under consideration. The number of the components of an antisymmetric tensor of order 2 decreases by 
passing from an affine tensor of order 2 to an antisymmetric tensor of the same order and this is useful in order to satisfy 
simplification and compression needs. I introduced fundamental metric expressions referring to transformed random 
quantities representing changes of origin obtained by using a conceptually and operationally complete notion of coherent 
prevision of marginal univariate random quantities. By considering quadruple divided random quantities I realized that 
the notion of coherent prevision of bivariate random quantities can be used in order to obtain fundamental metric 
expressions of quadruple divided random quantities.
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