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Abstract:-
To investigate implicative filters of hoops furthermore, we apply n-fold theory to (α, β)-hesitant fuzzy implicative filters 
and introduce the notion of n-fold (α,β)-hesitant fuzzy implicative filters, and obtain some conditions for a (α,β)-hesitant 
fuzzy filter to be a n-fold (α,β)-hesitant fuzzy implicative filter. We also study the preimage and image of n-fold (α, β)-
hesitant fuzzy implicative filters.
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1. INTRODUCTION
Hoop-algebras or briefly hoops as ordered commutative residuated integral monoids satisfying a further conditions, 

were introduced by Bosbach [1]. The study of hoops has experienced a tremendous growth and more and more algebraic 
properties have been investigated [2, 3, 4]. In studying hoops, filters play an important role in the logical point of view 
and various filters correspond to various sets of provable formulae. Kondo [5] considered that fundamental properties of 
filters in hoops and proved that any positive filter of a hoop is implicative and fantastic. To extend the research to filter
theory of hoops, [6] gave the notions of some types of filters (positive) implicative filters, fantastic filters, associative 
filters) in pseudo hoop-algebras and investigated their properties. [7] introduced the notions of n-fold (positive) implicative 
filters,

There are many complicated problems in real life that involve uncertain data. The hesitant fuzzy set [8] is a very useful 
tool to deal with uncertainty in avoiding such issues in which each criterion can be described as a hesitant fuzzy element 
defined in terms of the opinions of experts and permits the membership having a set of possible values in decision making. 
In the same time, hesitant fuzzy set theory has been applied to investigate algebraic structures, such as MTL-algebras [9] 
and BCK/BCIalgebras [10]. Yang et al. put forward a new hesitant fuzzy filterł(α,β)-hesitant fuzzy filter, which is a 
generalization of hesitant fuzzy filters [11]. To extend the research of alpha,β-hesitant fuzzy filter, Yang further studied 
some characterizations of (α,β)-hesitant implicative fuzzy filters of hoops [12].

Considering that the notions of n-fold implicative filters [7] and (α,β)-hesitant fuzzy implicative filters [12], we present 
the notion of n-fold (α,β)-hesitant fuzzy implicative filters in hoops. Some characterizations of n-fold (α,β)-hesitant fuzzy 
implicative filters are discussed. The preimage and image of n-fold (α,β)-hesitant fuzzy implicative filters are also 
investigated.

2. Preliminaries
To facilitate our discussion, we first review some backgrounds of hoops and hesitant fuzzy sets.

An algebra (A, ⊗, →,1) of type (2,2,0) is called a hoop if it satisfies the following conditions: for any x,y,z ∈ A,
(HP1) (H, ⊗,1) is a commutative monoid,
(HP2) x → x = 1,
(HP3) x ⊗ (x → y) = y ⊗ (y → x),
(HP4) x → (y → z) = (x ⊗ y) → z.

In the following, unless mentioned otherwise, (A, ⊗, →,1) will be a hoop, which will often be referred by its support 
set A.

The order relation “≤” on A is defined by x ≤ y if and only if x → y = 1 for any x,y ∈ A. We put x ∧ y = x ⊗ (x → y) 

and denote 
Proposition 2.1. [13, 14] Let (A, ⊗, →,1) be a hoop. Then the following assertions are valid: for any x,y,z ∈ A,
(1) x ⊗ y ≤ z if and only if x ≤ y → z,
(2) x ⊗ (x → y) ≤ y, x ⊗ y ≤ x ∧ y ≤ x → y, x ≤ y → x,
(3) x → y ≤ (y → z) → (x → z), y → x ≤ (z → y) → (z → x),
(4) (x → y) → (x → z) ≤ x → (y → z),
(5) x → (y → z) = (x ⊗ y) → z = y → (x → z),
(6) if x ≤ y, then y → z ≤ x → z, z → x ≤ z → y and x ⊗ z ≤ y ⊗ z.

Let F a nonempty subset of A. F is called a filter if it satisfies: for any x,y ∈ A, (i) x,y ∈ F implies x ⊗ y ∈ F; (ii) x ∈
F and x ≤ y imply y ∈ F. It is shown that a nonempty subset F of A is a filter if and only if for any x,y ∈ A, (i) 1 ∈ F; (ii) x 
∈ F and x → y ∈ F imply y ∈ F. Moreover, a non-empty set F of A is called an implicative filter of A if it satisfies that x 
→ (y → z) ∈ F and x → y ∈ F imply x → z ∈ F, for any x,y,z ∈ A [7].

Definition 2.2. [7] Let F be a subset of A and n ∈ N. Then F is called a n-fold implicative filter of A if it satisfies: for any 
x,y,z ∈ A
(1) 1 ∈ F,
(2) xn → (y → z) ∈ F and xn → y ∈ F imply xn → z ∈ F.

Definition 2.3. [8] Let E be a reference set. A hesitant fuzzy set H on E is defined in terms of a function h that when 
applied to E returns a subset of [0,1], i.e.,

H = {(e,h(e))|e ∈ E},
where h(e) is a set of some different values in [0,1], representing the possible membership degrees of the element e ∈ E 
to H.

For convenience, the hesitant fuzzy set H will often be referred to by its function h. In what follows, we take a hoop 
A as a reference set and ∅ ⊆ α ⊂ β ⊆ [0,1].

Yang et al. [11] introduced following notations. Let h be hesitant fuzzy set of A. For any x,y ∈ A,

) means that h(x) ∩ β ⊆ h(y) ∪ α,

) means that (h(x) ∩ β) ∪ α = (h(x) ∩ β) ∪ α.
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It is easy to verify that (h(x) ∩ β) ∪ α⊆(h(x)∩β)∪ α.

Lemma 2.4. [11] Let h be a hesitant fuzzy set of A. Then for any x,y ∈ A,

and h imply h ,

implies h ,

implies h ,

and h imply h .

A hesitant fuzzy set h of A is called a (α,β)-hesitant fuzzy filter if if it satisfies: for any x,y ∈ A, (i) h

y implies that h ). It has been proved that a hesitant fuzzy set h of A is a (α,β)-hesitant 

fuzzy filter if and only if (i) (x → y) ) for any x,y ∈ A [11].

Definition 2.5. [12] A hesitant fuzzy set h of A is called a (α,β)-hesitant fuzzy filter if if it satisfies: for any x,y ∈ A,

,

(2) h(x → y) ∩ h((x → y) → z) (x → z).

Proposition 2.6. [12] Every (α,β)-hesitant fuzzy implicative filter of a hoop is a (α,β)-hesitant fuzzy filter.

Definition 2.7. Let A1 and A2 be two hoops. A function f : A1 → A2 is called a hoop-homomorphism if
(1) f(1) = 1 ,
(2) f(a ⊗ b) = f(a) ⊗ f(b), (3) f(a → b) = f(a) → f(b), for any a,b ∈ A1.

3. n-fold (α, β)-hesitant fuzzy implicative filters
In the section, we give the notion of n-fold (α,β)-hesitant fuzzy implicative filters of hoops, and present some 

characterizations of it.

Definition 3.1. Let h be a hesitant fuzzy set of A and n ∈ N. Then h is called a n-fold (α,β)-hesitant fuzzy implicative filter 
of A if if it satisfies: for any x,y ∈ A,

,

(2) h(xn → y) ∩ h((xn → (y → z)) (xn → z).

Remark 3.2. (1) Notice that 1-fold (α,β)-hesitant fuzzy implicative filter of a hoop is a (α,β)-hesitant fuzzy implicative 
filter.
(2) The notion of n-fold (α,β)-hesitant fuzzy filters of a hoop generalizes the notion of (α,β)-hesitant fuzzy implicative 

filters.
By taking x = 1 in Definition 3.1, it is to see that every n-fold (α,β)-hesitant fuzzy filter of a hoop is a (α,β)-hesitant fuzzy 
filter.

Example 3.3. Let A = {0,a,b,1} be a set with Cayley tables as follows.

⊗ 0 a b 1

0 0 0 0 0

a 0 0 0 a

b 0 0 a b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a b 1 1 1

b a b 1 1

1 0 a b 1
Then (H, ⊗, →,1) is a hoop. Let α = {0.2,0.3} and β = {0.2,0.3,0.6}. Define a hesitant fuzzy set h of A as

Routine calculations show that h is a 3-fold (α,β)-hesitant fuzzy filter of A.

Theorem 3.4. Let h be a (α,β)-hesitant fuzzy filter of A of A and n ∈ N. Then the following are equivalent:
for any x,y,z ∈ A,
(1) h is a n-fold (α,β)-hesitant fuzzy implicative filter of A,

(2) h(xn+1 → y) (xn → y),

(3) h(xn → x ,

(4) h(xn → (y → z)) xn → y) → (xn → z)).
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Proof. (1) ⇒ (2) Since xn → x = 1, then h(xn+1 → y) =α
β h(xn+1 → y) y)) ∩ h(xn → x) (xn → y) for any x,y ∈ A, thus (2) 

holds.
(2) ⇒ (3) The proof is by induction on n. Suppose that (2) holds.

Firstly, for n = 1, h(1) = h(x1+1 → x2) (x → x2), we have h(x → x2) =α
β h(1). 

Secondly, for n = 2, we get that 
h(1) = h(x3 → (x1 → x4))

(x → x4))
= h(x3 → x4)

→ x4),

and so h(x2 → x4) 
Finally, for n > 2, since xn+1 → (xn−1 → x2n) = 1, then 

h(1) = h(xn+1 → (xn−1 → x2n))

(xn → (xn−1 → x2n))
= h(xn−1 → (xn → x2n)),

and therefore h(xn−1 → (xn → x (1). By using the hypothesis n times, then we get h(xn−n →(xn → x2n)) =α
β h(1), 

thus h(xn → x

(3) ⇒ (4) Noticing that y → z ≤ (xn → y) → (xn → z) for any x,y,z ∈ A, we get that 
xn → (y → z) ≤ xn → ((xn → y) → (xn → z))

= xn → (xn → ((xn → y) → z))
= x2n → ((xn → y) → z)

≤ (xn → x2n) → (xn → ((xn → y) → z)).

Consider that h is a (α,β)-hesitant fuzzy filter and h(xn → x (1), we get that

h(xn → (y → z)) xn → x2n) → (xn → ((xn → y) → z)))

(xn → x2n) ∩ h((xn → x2n) → (xn → ((xn → y) → z)))

xn → y) → (xn → z)),

this means that h(xn → (y → z)) xn → y) → (xn → z)).

(4) ⇒ (1) By hypothesis that h is a (α,β)-hesitant fuzzy filter, we obtain that

h(xn → y) ∩ h(xn → (y → z)) (xn → y) ∩ h((xn → y) → (xn → z))

(xn → z),
therefore h is a n-fold (α,β)-hesitant fuzzy implicative filter of A.

Theorem 3.5. Let h be a (α,β)-hesitant fuzzy filter of A and n ∈ N. Then h is a n-fold (α,β)-hesitant fuzzy implicative 

filter if and only if h(x2n → y) (xn → y) for any x,y ∈ A.
Proof. Assume that h is a n-fold (α,β)-hesitant fuzzy implicative filter, then taking y = xn and z = y in

Theorem 3.4 (4), we have h(x2n → y) = h(xn → (xn → y)) xn → xn) → (xn → y)) = h(xn → y), that is, h(x2n → y) (xn 

→ y).

Conversely, it follows that h(1) = h(x2n → x (xn → x2n), and so h(1) =β
α h(xn → x2n).

According to Theorem 3.4, we get that h is a n-fold (α,β)-hesitant fuzzy implicative filter of A.

Proposition 3.6. If h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then for any x,y,z ∈ A,
(1) h(xn+1 → y) =α

β h(xn → y),
(2) h(xn → (y → z)) =α

β h((xn → y) → (xn → z)),
(3) h(x2n → y) =α

β h(xn → y).

Proof. (1) Since h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then h(xn+1 → y) (xn → y) by Theorem 3.4. 

As for the reverse inclusion, from xn → y ≤ xn+1 → y, we have h(xn → y) → y). Thus h(xn → y) =α
β h(xn+1 → y).

(2) Notice that h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, we get that h(xn → (y → z)) h((xn → y) → (xn → 
z)) by Theorem 3.4. For the converse, since (xn → y) → (xn → z) ≤ xn → (y → z) by Proposition 2.1 (6), we have h((xn 

→ y) → (xn → z)) (xn → (y → z)), thus h(xn → (y → z)) h((xn → y) → (xn → z)).
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(3) According to Theorem 3.5, we get that h(x2n → y) (xn → y) for any x,y ∈ A. Moreover, since xn → y ≤ x2n → y, then 

h(xn → y) n → y), hence we conclude h(x2n → y) (xn → y).

Theorem 3.7. Let h be a (α,β)-hesitant fuzzy filter of A and n ∈ N. Then h is a n-fold (α,β)-hesitant fuzzy implicative filter 

if and only if h(z → (x2n → y)) (xn → y) for any x,y,z ∈ A.

Proof. Suppose that h is a n-fold (α,β)-hesitant fuzzy implicative filter, then h(z → (x2n → y)) h(x2n → y) (xn 

→ y) by Theorem 3.5, and so, h(z → (x2n → y)) (xn → y).

Conversely, taking z = 1, we get h(1 → (x2n → y)) n → y) (xn → y). According to
Theorem 3.5, we get that h is a n-fold (α,β)-hesitant fuzzy implicative filter of A.

Lemma 3.8. Every n-fold (α,β)-hesitant fuzzy implicative filter of A is a (n + 1)-fold (α,β)-hesitant fuzzy implicative filter.

Proof. Let h is a n-fold (α,β)-hesitant fuzzy implicative filter of A. Then h(xn+2 → y) = h(xn+1 → (x → y)) (xn → (x → 

y)) = h(xn+1 → y), that is, h(xn+2 → y) → y). Using Theorem 3.5, we have that h is a (n + 1)-fold (α,β)-hesitant 
fuzzy implicative filter.

Proposition 3.9. If h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then h is (n + k)-fold (α,β)hesitant fuzzy 
implicative filters.

The following result shows that the relationship between n-fold (α,β)-hesitant fuzzy implicative filters and n-fold 
implicative filter.

Proposition 3.10. If h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then the set ker(h) := {x ∈ A|h(x) =α
β h(1)} is 

a n-fold implicative filter of A.
Proof. Obviously, 1 ∈ ker(h). For any xn → (y → z) ∈ ker(h) and xn → y ∈ ker(h), then h(xn → (y → z)) =α

β h(1) and h(xn 

→ y) (1). Notice that h is a n-fold (α,β)-hesitant fuzzy implicative filter of A, we obtain that h (y → z)) 

∩ h(xn → y) (xn → z) ≤, and so h(xn → z) =β
α h(1), it follows that xn → z ∈ ker(h). Thus ker(h) is a n-fold implicative 

filter of A.

Proposition 3.11. Let h1,h2 be two hesitant fuzzy sets of A with h1(1) =α
β h2(1) and h1 vα

β h2, that is, h for any 
x ∈ A. If h1 is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then h2 is also a n-fold (α,β)-hesitant fuzzy implicative 
filter of A.

Proof. Notice that h1 is a n-fold (α,β)-hesitant fuzzy implicative filter of A, then h1(1) =α
β h1(xn → x (xn → x2n) for 

any x ∈ A. It follows that h2(xn → x2n) =β
α h2(1), hence h2 is also a n-fold

(α,β)-hesitant fuzzy implicative filter of A.

Definition 3.12. Let A1, A2 be two hoops, f : A1 → A2 be a map, and h1,h2 be hesitant fuzzy sets of A1 and A2, respectively. 
Then
(1) the preimage f−1(h2) of h2 under f is defined as f−1(h2)(x) =α

β h2(f(x)), for any x ∈ A1,
(2) the image f(h1) of h1 under f is defined as

Theorem 3.13. Let h1,h2 be n-fold (α,β)-hesitant fuzzy implicative filters of A1 and A2, respectively.
(1) If f : A1 → A2 is a hoop-homomorphism, then the preimage f−1(h2) is a n-fold (α,β)-hesitant fuzzy implicative filter of 

A1.
(2) If f is a hoop-epimorphism, then the image f(h1) is a n-fold (α,β)-hesitant fuzzy implicative filter of A2.
Proof. It is easy to prove that f−1(h2) and f(h1) are (α,β)-hesitant fuzzy filters of A1 and A2, respectively.

(1) f−1(h2)(xn → x2n) =α
β h2(f(xn → x2n)) = h2(f(x)n → f(x)2n) =α

β h2(1), hence f−1(h2) is a n-fold (α,β)-hesitant fuzzy 
implicative filter of A1.

(2) Note that h1 is a n-fold implicative pseudo valuations on H1 and f is a hoop-epimorphism, For any y ∈ H2, then 
there exists x ∈ H1 such that f(x) = y. It follows that

and so f(h1) is a n-fold (α,β)-hesitant fuzzy implicative filter of A2.
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