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1. BASIC NOTATION AND DEFINITIONS. Let A=(ank) be an infinite matrix defining a sequence to a sequence 
summability transformation given by 

where (Ax)n denotes the nth term of the image sequence Ax.  Let y be a complex number sequence. Throughout this paper, 
we use the following basic notations and definitions: 
i. c={the set of all convergent complex number sequences}

ii.

iii.
iv. c(A) ={y: yis summable by A}

Definition 1. If X and Y are sets of complex number sequences, then the matrix A is called an X Y matrix if the image Au 
of u under the transformation A is in Y whenever u is in X. 

Definition 2. The summability matrix A  is said to be ltranslative  for the sequence u in  provided that each of the sequences 

Tu and Su  is in where Tu ={u1,u2,u3,...} and 
Su ={0,u0,u1,...}. 
The Extended Abel matrix, denoted by Aa,t , the  matrix is defined by  

Theorem 1. Every matrix is - translative for those sequences for which

Proof.  Suppose that x is a sequence in for which . We show that 

Note that 
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The use of the triangle inequality in equation (3.1) is legitimate as the radii of convergence of the power series are at 

least 1.  Now if we show that both A and B are in , then (1) holds. But the condition that AÎ and BÎ follow easily 

from the hypotheses that and , respectively. Next, we show that (2) holds as follows. We have 

The use of the triangle inequality in (3.4) is justified as above.  If we show that E and F are in , then (2) holds. But the 

hypothesis that and implies that both E and F are in , resprectively, and hence the theorem 
follows. 

Here we remark that a sequence x defined by is one of the sequences which satisfies the condition of Theorem 
follows. 
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