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Abstract:-
Based on the Darcy model, uid convection in a porous rectangle is analyzed taking into account anisotropy of thermal 
characteristics and permeability. Relations between parameters for which the problem belongs to the class of cosymmetric 
systems are derived. For this case explicit formulas for the critical numbers of the loss of stability of mechanical 
equilibrium are found. Using a nite-di erence method that preserves the cosymmetry of the problem, family of stationary 
convective regimes is computed. Through the computational experiment the destruction of families is demonstrated in the 
case of violation of the conditions of cosymmetry. As result the appearance of a nite number of stationary regimes are 
obtained.
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Convection equations of heat-conducting uid in a porous anisotropic medium based on Darcy’s law. The plane 
problem of heating a rectangular container is considered Ω = [0,a] × [0,b], on the boundary of which the conditions of 
impermeability and temperature pro le linear in height are given T∗(y) = T2 − y(T2 − T1)/b, Where T1 Ł T2 temperature at 
the top (y = b) and bottom (y = 0) boundaries, respectively, the force of gravity acts in the direction opposite to the 
coordinate y. Next, a perturbation of the temperature eld is introduced T(x,y,t) = T∗(y) + θ(x,y,t) and a transition is made 
to dimensionless quantities [1]. For stream function ψ and temperature deviations θ the following initial-boundary problem 
is obtained with respect to the linear pro le:

0 = Mψ + λθx = f1, ψ|∂Ω = θ|∂Ω = 0. (1)
θ˙ = LDθ − ψx − J(ψ,θ) = f2, J = θxψy − θyψx (2)

M = ∂y(µ11∂y − µ12∂x) + ∂x(−µ21∂y + µ22∂x), (3)
LD = ∂x (d11∂x + d12∂y) + ∂y (d21∂x + d22∂y). (4)

Here t time, µij the components of the tensor of dimensionless coe cients of reverse permeability, dij coe cients thermal 
conductivity, λ Rayleigh ltration number.

Equations (1) (4) supplemented with initial conditions θ(x,y,0) = θ0(0,y).
With µ11 = µ22 = d11 = d22 = 1 Ł µ12 = µ21 = d12 = d21 = 0 from (1) (2) equations are obtained that correspond to the 
isotropic problem. In this case, the system of equations is kosymmetric according to [2], those there is a vector eld L, 
which is orthogonal to the vector eld of the problem and does not vanish on a nontrivial stationary solution. IN [1] set the 
conditions under which the task (1) (4) is cosymmetric, these conditions are clari ed by the following lemma

Lemma. Under the conditions

cosymmetry of the system (1) (4) is a vector function L = (d22θ,−µ11ψ).

Mechanical Equilibrium Stability Analysis. Equations (1) (4) satis es zero solution θ = ψ = 0, corresponding to 
mechanical equilibrium. In the case of µ12 = µ21 = d12 = d21 = 0 from (1) (4) for perturbations, a linear system is obtained
0 = µ11ψyy + µ22ψxx + λθx, ψ|∂Ω = 0, (6) θ˙ = d11θxx + d22θyy − ψx, θ|∂Ω = 0. (7)
It turns out that critical Rayleigh numbers λ, corresponding to the monotonic instability of mechanical equilibrium, are 
given by the formula

(8)

The emergence of the instability of mechanical equilibrium corresponds to the eigenvalue λ11. Critical values of the 
Rayleigh ltration number λ for isotropic case follow from (8) at µ22 = d11 = d22 = 1. In [2] for the isotropic Darcy problem, 
it is shown that the rst critical value λ11 twice for an arbitrary region, and when the transition parameter λ through λ11 from 
a state of mechanical equilibrium a family of stationary modes branches o (equilibria). The calculations performed in this 
paper showed that a similar scenario is realized for the Darcy anisotropic problem. The equilibrium family for the plane 
problem of ltration convection has a variable spectrum, this distinguishes the cosymmetric situation from the symmetric 
one. Every transition λ through subsequent critical values λkj corresponds to the bifurcation of the birth of a family of 
unstable stationary modes.

In case of violation of conditions (5) vector function L = (d22θ, −µ11ψ) is not a problem cosymmetry. In this case, 
instead of a one-parameter family, a nite number of convective regimes are formed. (Stationary or non-stationary) [3 5].

Further numerical research is carried out for the case µij = dij = 0, (i 6= j). Following [3], it turns out selective 
(selection) function

(9)

Here ψ and θ are the solution to the problem (1) (4) on condition µ11d11 = µ22d22 (case of cosymmetry) belonging to the 

family of stationary modes. Parameter νsets parametrization on the family, ν ∈ [0, 1]. Symbols denoted 
parameter values that di er from those for which the family is calculated. At µ0

ii = µii, d0
ii = dii, (i = 1, 2) selective function 

S (ν) = 0. If a µ0
ii 6= µii and/or d0

ii =6 dii, (i = 1, 2), then there are modes corresponding to the solutions of the equation 

S(ν) = 0. If one parameter is disturbed selective equation (9) will take the following form
Z

S (ν) = −εµ11 ψxθxdxdy = 0 (10)
Ω

4. Numerical study. In the case of anisotropy, the Darcy problem with cosymmetry in the [1] an analysis of the occurrence 
of stationary convective regimes, branching o from the loss of stability of mechanical equilibrium, is given. The conditions 
on the
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coe cients of the system under which the problem has cosymmetry and the branching of the continuous family of stationary 
modes are analytically determined. In this paper, the results of calculations of the families themselves are presented on 
the basis of the scheme [6], and the study of their destruction under violation of the conditions. Table 1 presents the results 
of calculations of the critical Rayleigh numbers depending 

Table 1 Critical Rayleigh numbers of various parameters µij Ł d22 at d11 =1, a =2.5, b =1

µ11 µ22 d22 λ11 λ21 Œ æ

1 1 1 45.795 64.745 46.121 46.121 65.770 65.770 +

1.2 1 1.2 53.691 72.640 54.135 54.135 73.876 73.876 +

1.2 0.8 1.5 52.427 67.587 52.953 52.953 68.856 68.856 +

1.21 1.1 1.1 54.717 75.562 55.139 55.139 76.803 76.803 +

1.1 0.8 1.5 50.909 50.928 66.719 66.879 -

1.3 0.8 1.5 54.932 54.961 70.810 70.935 -

on combinations of parameters of reverse permeability µii and thermal conductivity d22 Ł d11 = 1, a = 2.5, b = 1. The value 

λ11, λ21 is calculated by the formula (8), and the quantities meet the rst three critical values on the grid 36×12. 
In the last column Œ æ¿ notes the ful llment of the conditions of cosymmetry (5).

The rst row of the table answers the isotropic problem [4], the next three lines are cosymmetries in the anisotropic 
case. The second line corresponds to the conditions given in [1], and the third and fourth conditions (5). Thus, the 
conditions for the existence of cosymmetry (5) allow you to expand the set of values of the coe cients for which you can 
apply the formula for calculating the critical Rayleigh numbers [1]. Critical numbers characterize the occurrence of 
convection as a result of monotonous loss of stability of mechanical equilibrium. The last two lines of the table 1 present 
the results of calculating the critical numbers when the condition for the existence of cosymmetry is violated. It can be 
seen that the duplicity of the eigenvalues of the corresponding spectral problem disappears.

Figure:-1 Stationary mode families with cosymmetry: 1) isotropic case; 2) µ11 = d22 =1.2, µ22 =1; µ11 =1.2, µ22 =0.8, d22 

=1.5, λ =90 (3), λ =120 (4), λ =180 (5), λ =210 (6), λ =270 (7); d11 =1; d11 =1

In fig. 1 calculated families of stationary modes are presented in coordinates Nuh

(11)

Isotropic case corresponds to the curve 1. With changing parameters µ11, d22, µ22, according to the formula (5), cosymmetry 
is preserved, while the family shifts, see curves 2 Ł 3. With the growth of the Rayleigh number λ the family increases in 
size and shifts towards negative values Nuh.

Figure:-2 Stationary families when λ =90 (curve 1), λ =120 (2), λ =150 (3), λ =180 (4), λ =270 (5); µ11 = d22 =1.2, µ22 = 
d11 =1.
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In g. 2 on the left is a family curve calculated at λ = 150. The dots mark the stationary modes, the stream functions of 
which are given on the right. Depending on the position of the point on the family, the resulting mode consists of four 
shafts (points 2, 4) or three main and two angular shafts (points 1, 3).

Figure:-3 Graph of the selective function for d11 =1.2 (dotted curve), d11 =1.5 (solid curve); λ =120, µ11 = d22 =1.2, µ22 

=1.0

In g. 3 graphs of discrete analogue of the selective function are presented (10) for µ11 = d22 = 1.2, µ22 = 1.0 and various 
meanings d11. When the perturbation of the parameter d˜

11 = d11 + ε grid analog of the selective equation (10) has the 
following form:

(12)

Here through marked temperature and current function corresponding to the point family of stationary 
modes with number ν.
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