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Abstract:-
Counts are non-negative integers. It represents the number of occurrences of an event within a fixed period. Measurements 
scales of categorical variable consist of two main types of measurement scales, ordered scales that named ordinal 
variables and unordered scales that named nominal variables. Regression models are the most frequently used statistical 
models for analyzing count data such as Poisson and negative binomial regression models; logistic regression models 
are used with binary and categorical variables. The main goals of this research are considering these models along 
estimating the parameters of them, discuss the proper model of each type of data, and make a comparison between models 
using suitable statistical programs for analyzing the two data sets.  
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1. INTRODUCTION 
Poisson distribution has been verified to be the best distribution to describe count data. Poisson regression model is 

the earliest description model for describing the relation between a Poisson distributed dependent variable that is count, 
and one or more independent variables. It can be used in many applications such as medical, education, and many other 
applications. It suffers a potential problem, the assumption of the equality of the variance, and the mean which is violated;
the over/under dispersion occurs, and the standard errors estimated will be biased which will then lead to incorrect test 
statistics. [Lawless (1987)] 

There are many early works done to correct and to treat over/under dispersion problems such as the Poisson quasi 
likelihood method, or alternatively using the negative binomial regression models or logistic regression models. [Cameron 
and Trivedi (1986)]  

Logistic regression models are the most popular models for dealing with binary data and categorical data. The 
parameters β in logistic models determine the rate of increase or decrease of the S-shaped curve for the probability of 
success π(x). The sign of β indicates whether the curve ascends (β > 0) or descends (β < 0), and the rate of change increases 
as |β| increases. When β = 0 the curve becomes a horizontal straight line. The binary response Y is then independent of X. 
For logistic regression parameter β, that line has slope equal to βπ(x)[1 − π(x)]. The slope approaches 0 as the probability 
approaches 1.0 or 0. [Agresti (2007)]  

This research introduces a suitable comparison between Poisson, negative binomial regression models, and 
logistic regression models to treat and analysis count and dispersion data, binary and categorical data respectively. Section 
(2) has details of the Poisson, negative binomial, and logistic regression models, some examples of these models and 
literature review of some studies that consider or use them. Section (3) has estimation methods for parameters along with 
many criterions for testing the accurate and significance of models and parameters. Section (4) has two suitable 
applications of the Poisson, negative binomial, and logistic models using suitable data sets. The conclusions and 
recommendation will be included in section (5), and finally references will be in section (6).  

2. The Poisson and Negative Binomial and Logistic Regression Models 
Cameron and Trivedi (1998) mentioned that count data regression models are useful in studying the occurrence rate 

per unit of time conditional on some covariates. Count response variable addresses non-negative integer responses need 
suitable regression models such as binary logistic, probit, grouped logistic, ordinal logistic, Poisson and negative binomial 
regression models.   

Greene (2008) defined Poisson regression model as the basis model for describing the relation between Poisson 
distributed response variable Y, and one or more independent variables which are themselves random variables. The 
Poisson regression model is often used for modeling count data that has number of useful extensions for count models 
such as negative binomial models. The Poisson model has the conditional mean function E[(yi|xi)] = λi , and conditional 
variance function var[(yi|xi)] = λi , where the parameters are λi = exp(x′i β)

Hilbe (1994) stated negative binomial models for dealing with count data when the conditional variance exceeds 
the conditional mean in Poisson model. He mentioned that Log negative binominal regression is a valuable member of 
the family of generalized linear models for discrete data when there is independence between observations, and 
heterogeneity is not due to longitudinal effects. Yaacob, et al. (2010) mentioned that Poisson regression model is a good 
starting point of analyzing count data models such as the numbers of patients visit doctors, the number of patent awarded 
to a firm or bank, the number of road accident death, the number of dengue fever cases are restricted to a single digit or 
integer with quite low number of events.  

Agresti (2007) pointed that over dispersion occurs when the model omits important predictors, when the link 
function between response and predictor variables is mistaken, or data include outliers. The Poisson model fails to be 
sufficient for these problems and also for interaction terms where predictors need to be transformed to another scale. Hilbe 
(2007) mentioned that this phenomenon is common when there is positive correlation between responses or there is an 
excess variation between response probabilities, or counts. It also arises when there are violations in the distributional 
assumptions of the data, such as clustered data, and thereby violates the likelihood independence of observation 
assumption. 

Zeileis, et al. (2008) suggested to use negative binomial hurdle model to fit inflated zero observations realize in 
count data. Zou, et al. (2012) proposed mixture negative binomial regression models to address the unobserved 
heterogeneity problem in vehicle crash data.  Piza (2012) used negative binomial model with crime data. He   mentioned 
that most crimes incidents are distributed as rare event counts.   

Finlayson (2010) assumed data as a mixture of two separate data generation processes, one generates only zeroes 
and the other process generated counts from negative binomial model. The result of a Bernoulli trial is used to determine 
which of the two processes generates observation. Molla and Muniswamy (2012) suggest using the power of score test 
for negative binomial regression model to deal with over dispersion problems. The proposed score test was compared with 
likelihood ratio and the Wald test via Monte Carlo simulation technique.  The suggested forms of the test were also used 
with two real datasets such as using numerical illustration.  

2.1 The Poisson regression model: 
The Poisson regression is the most popular, and the standard technique for analyzing model of count data. It deals with 
rare events. It named as a log-linear model.  It has the following form: 
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Where the variance of y equals the expected value, �(�) = ���(�). The Poisson can be considered as a negative binomial 
with a heterogeneity parameter value of zero. Choosing between Poisson and negative binomial models depends on the 
nature of the distribution of the dependent variable. Analysis commonly selects negative binomial regression purely 
because the assumptions of Poisson models are often not observed specially the social data. [Lawless (1987)]  

2.2 The negative binomial regression models: 
Negative binomial regression models deal with over dispersion count data. These models have mean ��, and variance 
function equals to ��+ α ���. There are two special forms of the negative binomial regression model, in addition the Poisson 
regression model when the dispersion parameter α = 0. The negative binomial 2 is the standard formulation of the negative 
binomial models with P=2. It has the following from: 

The dispersion heterogeneity parameter is α , the mean and the variance functions are E(y) = � , V(y) = � + � �2

respectively. The negative binomial 1 has the variance function (1+ �)��= ���, as in generalized linear models. It sets P=1 
and can be defined as follows: 

Many other values of p have the same density except that α-1 is replaced by   �−1�2−�. [Cameron and Trivedi (1986)] 

2.3 The logistic regression model: 
The Logistic regression model is the best fitting models for describing relationship between binary (dichotomous) or 
ordinal dependent variable and a set of independent variables. It is flexible, easily used and leads to a meaningful 
interpretation. [Pohar, et al. (2004)] The binary logistic regression model has the response Y that takes only one of two 
possible values which is denoted by 0 for failure and 1 for success. The model is defined as follows: 

logit[π(x)] = ln( ) = a + βx (4)

The probability of success defined by P(Yi = 1) = πi and P(Yi = 0) = 1 − πi where the regression parameter is β.  The binary 
logistic regression formula implies the following formula for the probability   π(x) using the exponential form:  

The general form of the logistic regression model with multiple explanatory variables, Kpredictor variables x1, x2, … , xk

can be defined as follows: 
logit[P(Y = 1)] = α + β1x1 + β2x2 + ⋯ + βkxk (6)

The parameters βk refer to the effect of xk on the log odds of (Y = 1), controlling the other explanatory variable. [Agresti 
(2007)] The component structural of the logistic regression model sets the logit link between the probability of success 
and a linear combination of the covariates as follows: 

logit 1−πi xi2 + ⋯ + βkxik (7)

The model parameter vector is β = (β1, … , βk)T.  It  is a vector of k elements considering the model parameters which are 
to be estimated. The binary data formula can summarize in contingency tables. The response vector y = (y1, … , yn)T

contains the observed binary outcomes of n independent random variables Y1, … , Yn which has binomial distribution,  
Yi~ binomial (1, πi). The joint probability of the sample y1, … , yn:

P(Y1, … , Yn 
(1−yi) (8)

Where the success probabilities π(π1, … , πn)T. [Agresti (2007)] and [Konis (2007)]  

3. The Estimation Methods of Parameters and Goodness of Fit Criterions 
There are many estimation methods of estimating the parameters of the Poisson, negative binomial, and logistic 

regression models. Also, there are many criterions for testing the significance of models and parameters. Section (3.1) has 
the estimation methods of parameters and section (3.2) has the criterions for goodness of fit to test significance of models 
and parameters.   

3.1 The Estimation Methods of Parameters: 
The maximum likelihood method for estimating parameters of negative binomial 1 solves the following associated first-
order conditions: 
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Estimation based on the first two moments of negative binomial 1 yields the Poisson generalized model estimator 
[Cameron and Trivedi, (1998)] The Pseudo maximum likelihood estimator has not a closed form and is obtained by using 
correct specification of the mean in the framework of an exponential family for estimating parameters of the negative 
binomial model 2 where parameters are distributed as follows:  

The maximum likelihood for the logistic regression models is defined as follows: 

This iterative solution procedure is available in popular statistical procedures such as the SPSS and SAS Packages for 
maximizing such equations. [Dayton (1992)]  
The iterative reweighted least squares can also be used to estimate the parameters in nonlinear negative binomial model.  
For the binary logistic regression where (y=0 or y=1), the iterative reweighted least squares is equivalent maximizing the
log-likelihood of the Bernoulli distributed process using Newton's method. [Zou, et al. (2012)]  

3.2 Goodness of fit Criterion: 
The most frequently used measures for goodness-of-fit in generalized linear models are the Pearson chi-squares, and 

the deviance. The Pearson chi-squares statistic can be defined as follows: 

(12) 
The statistic has asymptotic chi-squares distribution with (n – p) degrees of freedom, where the number of rating classes 
is n, and the number of parameters is p. [Ismail and Jemain (2007)]  

The deviance measure of negative binomial models is used to compare two models. It has approximately chi-
squared distribution with k-degrees of freedom. [McCullough and Nelder (1989)]       

The maximum likelihood- ratio test assesses the adequacy of the negative binomial models, and generalized Poisson 
model. The statistic has asymptotic distribution of probability mass of one-half at zero, and one-half-chi-squares 
distribution with one degree of freedom. The null hypothesis is rejected if the statistic greater �2

(1−2�,1) [Cameron and 
Trivedi (1998)] 

4. Applications of  Binary and Count Data Models 
4.1 Application 1: 
The first data set is from: https://stats.idre.ucla.edu/stata/dae/negative-binomialregression/ to analysis the relation between 
the absent in the school and many variables. The concerned cases are students 314 selected from two high school juniors. 
The response variable is days absent. The variable math is the standardized math score for each student. The variable 
program has three-levels which indicate the type of instructional program in which the student is enrolled. The SPSS 
package and R program is used to describe the number of absent days and the math test. The results show the conditional 
mean of our outcome variable is much lower than its variance. 
The average numbers of days absent by program type are seem to suggest that program type is a good candidate for 
predicting the number of absent days outcome variable. The mean value of the outcome appears much varied by program. 
The variances within each level of program are higher than the means within each level. These differences suggest that 
over-dispersion problem is present and negative binomial regression model would be appropriate for describing such data 
set. Table (1) shows the average and variances of days absent for each program level: 
Table 1: Average days absent for each program level 

Program mean Variance 
N 

1 10.65 67.259 
40 

2 6.93 55.447 
167 

3 2.67 13.939 
107 

314 
Total 5.96 49.519 

∑
( yi− μ i  )

2

Var (yi )
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The estimated parameters of negative binomial model is in Table (2) with 95% Wald confidence interval for estimated 
parameters reflects the predictors are statistically significant for absent days:  
Table 2: Estimated parameters of negative binomial model 

95% Wald  
confidence 

interval
Hypothesis  test Exp(B)

95% Wald CI 
Exp (B)

parameter B
Standard 

error
lower upper

Wald 
chisquare

degrees 
of 

freedom
Sig. Exp(B) lower upper

Intercept 2.615 0.1992 2.225 3.005 172.34 1 0 13.667 9.25 20.195

Program=3
-

1.279
0.2048 -1.68

-
0.877

38.988 1 0 0.278 0.186 0.416

Program=2
-

0.441
0.1852

-
0.804

-
0.078

5.661 1 0.017 0.644 0.448 0.925

Program=1 0

Math
-

0.006
0.0025

-
0.011

-
0.001

5.55 1 0.018 0.994 0.989 0.999

The likelihood ratio chi-square value in Table (3) provides the significance of negative binomial model for fitting data set: 
Table (3): Omnibus test  

Likelihood ratio chi-
square 

Degrees of freedom Sig. 

67.184 3 0.000 

The binary logistic regression can be applied with the data by assuming the dependent variable days absent with two 
categories 0 for students make one absent day and 1 for students have not any absent days regardless the number of absent 
days.  The classification Table (4) after applying logistic regression model shows 81.5% overall percentage of correct 
classification of the cases as follows: 
Table 4: Classification results 

Observed

Predicted
Percentage 

Correctnot 
absent

absent

Step 
1

not absent 2 55 3.5

absent 3 254 98.8

Overall 
Percentage

81.5

The cut value is 0.500

The logistic regression model is as follows: 
logit[P(Y = 1)] = 5.574 − 0.12 Math − 1.262 Prog − 0.78 Gender (13)

4.2 Application 2: 
The second application is about inguinal hernia that remains one of the most common surgical problems. It affects 

males by 25%, females by 2% and 4.4 % in children which 10 times more common in boys. [Decker, et al (2019)] and 
[Hammoud (2019)]  

Surgical procedures fall into three categories: open repair without mesh, laparoscopic repair with a mesh and extra 
peritoneal repair. The goals of surgery include preventing the hernia recurrence, returning the patient to normal activities 
quickly and minimizing the postsurgical discomfort and adverse effects of surgery. [Baig, et al (2019)] The data set are 
selected from general surgery department in a University hospital in Egypt. It includes 137 patients aged between 12 and 
35 years managed during a period of 5 years. Cases were randomly selected from two groups, situ-simple herniotomy 
operation (group A) and tension free-mesh inguinal repair (group B). The data are analyzed by the SPSS package; first 
classification Table (5) shows 52.6% correctly classified:   
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Table 5: First classification results 

Observed

Predicted

Type
Percentage 

CorrectHernioto 
my

Herniora 
phy

Type

Herniot 
omy

72 0 100.0

Hernior 
aphy

65 0 .0

Overall 
Percentage

52.6%

The classification results in Table (6) after using the logistic model shows 89.8% correctly classified which increased by 
30.3%:   
Table 6: Classification results of logistic model 

Observed

Predicted
Type

Percentage 
Correct

Herniotom
y

Herniorap hy

Type
Hernioto my 66 6 91.7

Herniorap hy
8 57 87.7

Overall Percentage 89.8%

Table (7) has Nagelkerke R Square, -2 Log likelihood and Cox & Snell R Square equals which reflects the ability of 
logistic regression model in analysis the data set:    
Table 7: Goodness of fit results of logistic model 

-2 Log likelihood 
Cox & Snell R 

Square 
Nagelkerke R 

Square 

65.695 .595 .794 

Table (8) includes estimated values of parameters in logistic model which show variables: side and Age not significance 
whereas the follow up, time of operation and sex are significance predictor variables in logistic model: 
Table 8: Variables in the logistic model 

B S.E. Wald df Sig. Exp (B) 

Step 1 

Follow up 0.958 0.316 9.170 1 0.002 2.606 

Side 0.094 2 0.954 

Side (1) -17.193 60.203 0.082 1 0.775 0.000 

Side (2) -0.076 0.671 0.013 1 0.910 0.927 

Time 0.503 0.094 28.512 1 0.000 1.654 

Sex (1) -2.634 1.075 6.008 1 0.014 0.072 

Age 0.048 0.064 0.555 1 0.456 1.049 

Constan
t 

-19.918 4.018 24.568 1 0.000 0.000 

4. Conclusions and Recommendations 
This research reviewed and applied many statistical regression models to analysis count and binary data respectively. 

Poisson regression assumption did not meet in application 1 and 2, so negative binomial model is used for analyzing 
application 1. Results show good fit of the variables and the used model in applying negative binomial in application 1 
and logistic model in the two applications. The research supposes two values of the response variable for the first 
application and applies the logistic model which reflects better estimation of the parameters and the correct classification 
percentage. Also, the logistic model is applied with a medical real data set in the second application which lends a clinically 
meaningful interpretation. Some criteria for evaluation models and parameters are reviewed and applied such as Pearson 
Chi-Square statistic and Cox and Snell R-Square. Finally, if the dependent variable is count, binary or categorical the 
negative binomial and logistic models are the suitable use models to describe and analysis such data and on the bases of 
the goal of the research the dependent variable can used as count or category. It is suitable to try using other models such 
as Bayesian approach and operation research techniques for dealing with these types of data and applying alternative 
methods for goodness of fit criterion in solving experimental design problems.  

Volume-2 | Issue-1 | June, 2016 11



6. References: 
[1]. Agresti A. (2007). An Introduction to Categorical Data Analysis. New Jersey. John Wiley & Sons, Inc., Hoboken. 
[2]. Cameron A. C. and Trivedi P. K.  (1986). Econometric models based on count data: cComparisons and applications 

of some estimators and tests. Journal of Applied Econometrics, Vol. 1, pp. 29-54. 
[3]. Cameron A. C. and Trivedi P. K. (1998). Regression Analysis of Count Data. First edition, New York. Cambridge 

University Press. United Kingdom .Published in the United States by Cambridge University Press. 
[4]. Dayton C. M. (1992). Logistic regression analysis. Statistics & Evaluation. 
[5]. Finlayson G. E. O. (2010). The additional cost of chronic disease in Manitoba. Winnipeg, MB: Manitoba Centre for 

Health Policy.  
[6]. Greene W.H. (2008). Econometric Analysis. Fourth edition, New York University. 
[7]. Hilbe J. M. (1994). Log-Negative Binomial Regression as a Generalized Linear Model. Arizona Arizona State 

University, Department of Sociology and Graduate College Committee on Statistic. 
[8]. Ismail N. Abdul Aziz Jemain A.A. (2007). Handling Over dispersion with Negative Binomial and Generalized 

Poisson Regression Models. Actuarial Society Forum, Winter 2007 
[9]. Lawless J. F. (1987). Negative binomial and mixed poission regression. The Canadian Journal of Statistics, Vol. 15, 

No. 3, PP. 209-225 
[10]. McCullough P. and Nelder J. A. (1989). Generalized Linear Models, second edition. Chapman & Hall, London. 

Murphy  
[11]. Molla D.T. and Muniswamy B. (2012). Power of Test for over dispersion Parameter in Negative Binomial 

Regression. Journal of Mathematics. Volume (1). No. 4, ISSN: 22785728, PP. 29-36. 
[12]. Pohar M. Blas, M. & Turk S. (2004). Comparison of Logistic Regression and Linear Discriminant Analysis: A 

Simulation Study. Metodoloski zvezki, 143-161.  
[13]. Zou Y. Zhang, Y. and Lord D. (2012). Application of finite Mixture of Negative Binomial Regression Models with 

Varying Weight Parameters for Vehicle Crash Data Analysis.  Accident Analysis & Prevention, Vol. 50, pp. 1042-
1051. 

List of Sites 
[1]. David C. (2003). Modeling survival data in medical research, Second Edition. Chapman & Hall 

http://www.ats.ucla.edu/stat/stata/output/stata_nbreg_output.htm
[2]. Decker E. Currie A. and Baig MK. (2019). Prolene hernia system versus Lichtenstein repair for inguinal hernia: a 

meta-analysis.  https://www.ncbi.nlm.nih.gov/pubmed/30771031
[3]. Mohamad Hammoud; Jeffrey Gerken. Inguinal Hernia  ttps://www.ncbi.nlm.nih.gov/books/NBK513332/ 
[4]. Negative Binomial and Generalized Poisson Regression Models. casualty actuarial society forum www.casact.org
[5]. Piza, E. (2012). Using Poisson and Negative Binomial Regression Models to Measure the Influence of Risk on Crime 

Incident Counts. Rutgers Center on Public Security: http://www.rutgerscps.org/docs/CountRegressionModels.pdf
[6]. Saffari, S. E., Adnan, R., and Greene, W. (2012). Hurdle Negative Binomial Regression Model With Right Censored 

Count Data. Stern School of Business, New York University. PP. 181-194. 
http://www.idescat.cat/sort/sort362/36.2.4.saffari-etal.pdf

[7]. Yaacob, W. F. W. Lazim, M. A. and Wah, Y. B. (2010). A Practical Approach in Modelling Count Data.  Malaysia 
Institute of Statistics. Faculty of Computer and Mathematical Science P.P. 176-183.
http://instatmy.org.my/downloads/RCSS'10/Proceedings/17P.pdf

[8]. Zeileis A. Kleiber C. and Jackman S. (2008). Regression Models for Count Data in R. Journal of Statistical Software, 
http://www.jstatsoft.org/ , Volume 27, Issue 8. 

Volume-2 | Issue-1 | June, 2016 12




