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Abstract:-

This study attempts at Adomian Decomposition Method (ADM) for solving second order ordinary differential equations
such as Multi singular equation, Bessel’s equation, and Oscillatory systems. The (ADM) results in many known equations,
some of them are studied and investigated by mathematicians and researchers, while others are still not well researched
yet. We give a new differential operator and invers differential operator to solve different types for initial value problem
in the second order ordinary differential equation. There are some different situations that we will study and give the non-
linear examples that lead us to the approximate solutions of exact solution.
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I. INTRODUCTION
We suppose the second order ordinary differential equation as the form:

,+ b b+ a b—
Yy + ((m+n)+ %)y’ + (nm + ! —i;am + al )

2
With initial conditions

Jy = flx,y), (1)

xr=

¥ (0)=a)"(0)="b,
Where f{x,y) is given function, a, b, m, and n are constants.
This type of equation has great importance and necessity, because it produces some famous equations and it is studyied
by some scientists and researchers, like Multi singular equation [10], Oscillatory systems [11], and Emden-Fowler and
Lane-Emden type equation [8]. In addition, it has wide applications in math, enginering, mechanics and other science.
Many researchers studied singular initial value problems such as Cui M. and Geng F. Solving singular two-point boundary
value problem in reproducing kernel space [7], and Tawfiq L.N.M and Hussein R.W. On solution of regular singular initial
value problems [6].
The Adomian decomposition manner was introduced by Grorge Adomian in (1970) [3]. This method is used widely for
solving non-linear ordinary differential equation [5]. The solution get by this manner has a series shape which convergent
and easy accounting process. When we write the non-linear term like a series of polynomials, we can get a series of
solutions which are called Adomian polynomials. The (ADM) give importance to the study of singular value problem by
many researchers for example Wazwaz A.M. A new method for solving initial value problems in the second order ordinary
differential equations [1], and Hasan Y.Q. and Zhu L.M. singular boundary value problems of higher ordinary differential
equation by modified Adomian decomposition method [9]. In this research we introduce solutions for many singular initial
value problems of second order ordinary differential equation by using (ADM) to give a new differential operator which
works to solve these equations in a smooth and good way which leads us to the approximate solutions from the exact
solution, or may be exactly the exact solution.

II. Adomian decomposition method
We suggest a new differential operator as below:

d d
L ) = ',l;,—be—m.r _‘,I,b—a(i(m—n).r_;)’,a(fn.r )
() dx dx ( ) )
We can write the equation (1), as follows
Ly =flx.y). )

The inverse operator L' is therefore considered a two-fold integral operator as follows
, s

Lil () _ papne /AF .I,ufb(_)(nfm)‘r / ll,'b("”“?(.)d;l'([l‘.
0 0 4)
By taking L™ in both parts equation (3), we have
Y(x) = o(x) + L flxy). )

The Adomian Decomposition Manner introduce the solution y(x) and the non-linear function f{x,y) by infinite series:
[o.@]

U(*l") = § :y‘n(il")
n=0 s (6)
And

fan) = 30 A,
n=0 , (7)

Where the components y,(x) of the solution y(x) will be determined recurrently. Specific algorithms were seen in [2,4] to
formulate Adomian polynomials. The following algorithm:

Ao = f(yo),
A = !/lf/(!/(l)*

) 1 .
As =y f'(yo) + §yff"(l/0)~,

: . 1 .
Az = .U:sf/(.U()) + Ul;szll(’.Uo) + 3_,'!/13fm(!/0)
, 3

Can be used to construct Adomian polynomilas, when f{y) is a non-linear function. By substituting (6) and (7) into (5), we
get
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o0

i yn(z) = d(z) + L' Y An. (9)

n=I() n=I0

Through using Adomian Decomposition Manner, the components y(x) can be determined as

Y= o(x),
Yni1 = L 144'n~” 2 O- (10)
Which gives
y1=1L LAy,
W= L 1‘41:
ys =L ]AQ: (11)

From (8) and (11), we can determine the components y,(x), and hence the series solution of y(x) in (6) can be immediately
obtained.
n—1

¢71(I) = Z ylu
i=0 (12)

it can be used to approximate the exact solution. The approach presented above can be validated by testing it on a variety
of several linear and nonlinear initial valve problems.

III. NUMERICAL APPLICATIONS AND THE DISCUSSIONS OF DFFERENT CASES.
We will give illustrative examples for non-linear equations by (ADM) and explain these cases as follows

Case 1. We will give one example to explain Eq.(1).

Example 1.1.

We will explain this case by example which shows the convergence of the solution, by put m =2,n =3,a=1,b=2, in
equation(1), as follows:

3 8 1 11 1
v+ (B+EW+6+-+=) =124+ =+ )" + 2 —Iny,
Y +(()+;r)y +()+:17+I2) (12+ T +;r2)€ tr—ny (13)
10)=1)%0)=1,
with exact solution y(x) = e*.

The differential operator L for this equation as below

5 o d d .
L() =z %% —xe “—uze*(.
(- dx dx ( ) (14)
and the invers differential operator L' for this equation as below
s T . . ~T P -
L ()=ate™ / rle” / z?e? ()dxdr,
0 0 (15)
in an operator form, Eq.(13), yield to
1
Ly= (124 —+ —)e" +2 —Invy,
y=I x ;172) J (16)
by taken L' in both parts of (16), we have
11 1.,
y=L"((124+—+ =)e"+x) — L ' Iny.
) x xe (17)
goning on as before we get, the recursive relationship:
_ 11 1
yo = L71((12 + —+ Tz)e-f + )
yur1=—L"4,,n>0. (18)

The Adomian polynomials for the non-linear part f{y) = Iny, as follows
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Ay = Inyy,

”
A=2
Yo

2

Y- 1

A, =8 _4N

; )
Yo Yo,

Thus, the first few components are as below:
1+ +;172+11;173 19 1?4_+_307(Lr 5177 28 +184011" 163159 2® n 168437 z* iy
Yo = TT— —
Yo 2 48 1200 7200 352800 2822400 76204800 20—1016000
—;173+23 173 ;17"+ 1543 2% 115487 2° n 033131 2% 5285309 x N
16 400 4800 78400 11289600 ' 182891520 2177280000

x° 851 2% N 59239 x7 741529 z° N 8025587 z”
576 235200 15052800 243855360 4064256000

h =

Y2 =

Therefore
y@)=yo+y+y2 =
2?2 2 I xd a0 97 27 291947 28 12820033

1 o o _ _
s T 21T 120 T 720 T 130080~ 3657830400 T 60963840000

Table 1. Difference between ADM and exact solution

X Exact ADM Error
0 1.0000 | 1.0000 | 0000
0.1 | 1.10517 | 1.10517 | 00000
0.2 | 1.2214 | 1.2214 | 00000
0.3 | 1.34986 | 1.34986 | 00000
0.4 | 1.49182 | 1.49179 | 0.00003
0.5 | 1.64872 | 1.64844 | 0.00028
0.6 | 1.82212 | 1.82037 | 0.00175
0.7 | 2.01375 | 2.00559 | 0.00816
0.8 | 2.22554 | 2.1945 | 0.03104
0.9 | 2.4596 | 2.3588 | 0.1008

"

Figure 1. The Approximation for ADM and Exact solution

Tablel 1. Displays the comparison betweeen results of the Adomian decomposition method and the exact solutions
calculate for some chosen values. We can get from figure 1. That the (ADM) is correct, more active and converges to the
exact solution.

Case 2. When, n=m in Eq.(1).
The resulting ordinary differential equation gives the following form:
a+b n(a+0) alb—1
y" + (2n + f)l/’ + (72,2 + ( . ) + ( 2 ))!/ = f(z,y)

y(0) = a,y'(0) = b. ) (19)

Where f{x,y) is given function, n, a and b are constants.
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The differential operator L for this equation as below:
L( ) — rl~7b6>7”5"i l,bfn d r%e® ( )
dx dx ,
so, the invers differential operator L™! for this equation as form:

Lﬁl(.) :If(zefn.r /O‘E Iafb /0 b nl( )(lldl

In general, the general solution for this equation gives the following:

y(x) = (x) + Lfx,y).
To explain this case, we will give example as below:

Example 2.1.
We will put n =2,a=1,b=2, in Eq.(19), we have

3 6 1 ‘
y' 4+ (4+ = )y+(4+ -+ ):;178+4172+14I+9—y'1

with initial conditions y(0) = O,yO(O) 0.
The differential operator L for this equation as below:

o o, d d .
L() =22 —x—uxe*(.
) dr dx ()
so, the invers differential operator L™! as form:

s

L Y)=ate™ /OI ! /OI ;1’262I(.)(l;17d;17.(25)

In general, the general solution for this equation gives the following form:
y(x) = L1034+ 4x2+ 14x + 9) — L71(vY,
where that yo= L'(x®+ 4x2+ 14x + 9), yn+1 = —L—14n,n > 0.
The Adomian polynomials for the non-linear part {y) = y* as follows
."1[] = .U{-t \
A= -l,f,r[::m.
Az = dyys + 6ypy;

S0

Yy = T 2+

9 23z 431z 3875z | 7793zM 12059 =" ¥
121 8712 736164 36072036 450900450 4809604800

—z10 23211 43142 3875218 7793 x4 12059 215

=

Then, from yoand y;, we can get the exact solution y(x) = x?, by this method.

Case 3. When n=m, a=0, in Eq.(1).
The resulting ordinary differential equation give the following form:

b nt
y" + (2n + = )y + (n? + ?)y = f(x,y)

/) = a,4/(0) =,

>

(20)

2]

(22)

24

(26)

121 t 8712 736164 L 36072036 450900450 + 4809604800 *

@7

Where f(x,y) is given function, n and b are constants. The differential operator L for this equation is:

1 d
L() = —b f—n.r ¢ b nr )
()=a dz 11: ( )

and, the invers differential operator L™! for this equation is:

L*l( ) — efn.r /T ,I_fb /I ,l,ben‘.’r
0 0

The general solution for this equation given by:

y(x) = 9(0)e ™+ L7 flx,p).
We will give example which will illustrate this case, as following:

Example 3.1.
putn=3b=2. Eq.(27) we get
2 6 10, ,,
(6+ )y +(9+ ) =(25+ — ) + 4z —hn/

W0)= Ly 0)=2
with exact solution y(x) = %, the differential operator L yield to

B _Id o d 4,
L() =22 o ]Zdr(B(’)
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so, the invers differential operator L™! becomes

Lt )=¢e" / / 2” dxdr,
(33)

we can rewrite the equation (31) as below

10, . ;
Ly = (25+ ) 2 44z — L '(In yz)
(34)
by taking invers differential operator L 1 of both parts (34), we have

10 ‘
y(@) = e+ L7125+ —)e* + 4o — L7 (In uz)

using the decomposition series for the linear function and the polynomlal series for the non- 11near part, we get the recursive
relationship

. 10 5,
Yo =€ 2" + L7125 + —)e** + 4z,

T
Yur1=—L14,,n >0, (35)
The Adomian polynomials for the non -linear part f{y) = Iny? are computed as below:
Ay = Inyg,
21
Al - Aa
Yo
2 2
Ay = 22 ﬂ
Yo Jo, (36)

we will put (36) in (35), we obtain the components ] -
S5a3 4 174 1720 26 25 53327 13.1:8 57432° 2011 2%

_ 30 315 5040 504 433600 623700
—x3 24 29 r 7625 32327 728 )5129 x? 407873 !

=gty 00 315 1680 | 45 453600 | 4158000

2228 N T1z7 1459 28 N 28993 2% 39889 210
vy — _ B
27457 315 630 11340 226800 297000
then, the general solution given by y(x) = yoty1+y2 = 1.+2.x+2.x>+1.33333x3+0.66666 7x*+0.266667x°

+0.0888889x5+0.0261905x7+0.00110229x3+0.0189594x°-0.039437 1x'*+...

Yo =

Table 2. Difference between ADM and exact solution

x | Exact ADM Error
0 1.0000 | 1.0000 | 0000
0.1 | 1.2214 | 1.2214 | 00000
0.2 | 1.49182 | 1.49182 | 00000
0.3 | 1.82212 | 1.82212 | 00000
0.4 | 2.22554 | 2.22554 | 0.00000
0.5 | 2.71828 | 2.71826 | 0.00002
0.6 | 3.32012 | 3.31999 | 0.00013
0.7 | 4.0552 | 4.05455 | 0.00065
0.8 | 4.95303 | 49504 | 0.00263
0.9 | 6.04965 | 6.0407 | 0.00895

-1 0.5 .5 1 15

— Exact — ADM
Figure 2. The Approximation for ADM and Exact solution
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Table 2. Displays the comparison betweeen results of the Adomian decomposition method and the exact solutions calculate
for some chosen values. We can get from figure 2. that the (ADM) is correct, more active and converges to the exact
solution.

case 4. when n=m, a=-b, in Eq.(1).
The resulting ordinary differential equation gives the following form:

b(b—1 .
y" +2ny + (n® — %)y = f(x,y)
y(0) = a,y'(0) = b. ’ (37)
The differential operator L for this equation as below:
d ., d
L() = ‘,l,fbefn;z'_,1,21)_;1771)671;1‘ )
(- dr dx ( ) (38)
and, the invers differential operator L' for this equatlon as below
L7Y() = abe” / 2b/ ben®()dxda.
(39)
The general solution given by:
Y(x) = p(x) + L~fix, ). (40)
For this case, we will give one example as the following.
Example 4.1.
Suppose b =2,n =0, in Eq.(37), the equation yiled to
2 .
y' — —y =4z + 2% — g
T
y(0) =0,4'(0) =0, (41)
with exact soulion y(x) = x3. The differential operator L becomes
d ,d
L(y) = 2 2—z*—272%(y),
(y) = a2 Lol 2a ),
-1 o [T a [T a2
L (Ly)== / T / 2 (y" — y)drdr.
) Jo Jo x
In a differential operator form, Eq.(41), becomes
Ly=4x+x5—% (42)

Applying L™! on both parts 0f(42), we get
Y(x) =L (4x +x% — L),
o)
yo=L'(4x + x%), yn+1 = yn2,
where the Adomian polynomials for f{y) = )?, are

Ao = f(yo) = 5,
Ay = ylf’(!/o) = 2yoy1,

) 1, . .

Ay = yof'(yo) + —f”(yu)yi2 = 2yoy2 + ;1/12
8 ,

— I —
soy0 + H4,
—z8 13 x
54 4158 886464’

4678756992 '3 4 74673144 2% + 430911 2% + 1078 2%

18

vy =

Y2 =

19454271572736
y(x) =yo+y + 1 =
4 1858 127 2% x®

* 68257728 M 5733649152 * 18046634112° ,
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Table 3. Difference between ADM solution and exact solution

X Exact | ADM | Error
0.0 | 0.000 | 0.000 | 0000
0.1 | 0.001 | 0.001 | 0000
0.2 | 0.008 | 0.008 | 0000
0.3 | 0.027 | 0.027 | 0000
0.4 | 0.064 | 0.064 | 0000
0.5 | 0.125 | 0.125 | 0000
0.6 | 0.216 | 0.216 | 0000
0.7 | 0.343 | 0.343 | 0000
0.8 | 0.512 | 0.512 | 0000
0.9 | 0.729 | 0.729 | 0000
1.0 | 1.000 | 1.000 | 0000

| — Exact— ADM |
Figure 3. The Approximation for ADM and Exact solution

Taple 3. Displays the comparison betweeen results of the Adomian decomposition method and the exact solutions calculate
for some chosen values. We can get from figure 3. that the (ADM) is correct, more active and converges to the exact
solution.

Case 5. when a=b, in Eq.(1).
The resulting differential equation is:

2b
y' + ((m+n)+ —)y + (mn+
,

with initial conditions y(0) = a,)°(0) =b.
The differential operator L for this equation is taking a shape:
L( ) — I.—b()—m.r(_{()(m—n).z'(_l I,b()n.'r( )
- dx dr ) (44)
so, the invers differential operator L™!is taking a shape:
T

L—l () — I—be—n.r / e(n—m).r / Jfbf’””‘(.)d;l'd;l'.
JO JO

In general, the general solution for this equation as below:

Y(x) = p(x) + L™ fix,).
To illustrate this situation, we will give the following example

b(’”: n) b(bl; 1>)y = flz,y), (43)

(45)

Example 5.1.
We will put m = 1,n=-3,b =0, in Eq.(43), we get
Y'=2y'= 3y =—4e"+ 25— 2, (46)
¥(0)=1y(0)=1,

the exact soluion y(x) = e".

d d _.
L ) = e—.l'_efl:l:_e—d;r .
() dr dx ( ) (47)
and, the invers differential operator L' defined by:
€T &r
L) = 63"'/ 67'1"‘/ e’ (.)dxdr,
( ) Jo Jo ( ) (48)

We can rewrite (46) as follows
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Ly = —4¢e® 4+ 2e** — 2/, (49)

By take L' on both parts of (49), we get
y(x) = L (—4¢" +26%) — 2L\ (), (50)

pursuit as before we have the recursive relationship

1, 1 |
vo(w) = 5€* + SeT + L7 (—e” + 267)

Yn+1 = _2[/71(3/;1,3/:,,)-, n 2 0
(1)

then, the first few components are as below:

322 323 31z 1012° 3232° 100927 10372% 3167 2°

Yo = 1412
Yo=1tat——+ 120 " 720 T 5040 | 13440 ' 120060
28843210 87200211 262991212 791701 213

* 3628800 i 39916800 * 479001600 M 6227020800 o
11 ;1:4_89 x” 109 25 56327 336012° 114972° 4814321

Y = 2 93 . . _ _
4 30 40 252 20160 _10080 67200
4121087 ' 17456603 z'? 165974377 213

9979200 79833600 1556755200
/ _—1:‘5 1125 16627 21432% 102732 10619z 1698869 z!!
2T T 05 T 105 840 3024 2700 415800
19396339 212 80994211 23
© 4980600 23587200
therefore
y(@)=yo+ 1 +y2 =
2 23 35x2% 932°  21672% 607327 3339128 545717 Y
4o+ ——"—— - — — — —

2 2 24 40 720 1680 8064 120960
3368563 10 59829521 't 1966525171 2'% 7348525837 213
725760 13305600 479001600 2075673600

Table 4. Difference between ADM solution and exact solution

X Exact ADM Error
0.0 | 1.0000 | 1.0000 | 0000
0.1 | 1.10517 | 1.10433 | 0.00084
0.2 | 1.2214 | 1.21267 | 0.00873
0.3 | 1.34986 | 1.31065 | 0.03921
0.4 | 1.49182 | 1.36393 | 0.12789
0.5 | 1.64872 | 1.49004 | 0.15868

1.8

—— Exact — ADM
Figure 4. The Approximation for ADM and Exact solution
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Table 4. Displays the comparison betweeen results of the Adomian decomposition method and the exact solutions calculate
for some chosen values. We can get from figure 4. that the (ADM) is correct, more active and converges to the exact
solution.

Case 6.when n=0, in Eq(1). Then, the resulting differential equation is:

" a+b, , ,ma alb—1) ,
y+m+—)y +(—+—=—)y = J(z,!
Y+ ( W+ (= = w=1fy) 52)
The differential operator L of this equation is taking a shape:
L() _ x—be—mx ixb—aemx ixa(.)
dx dx (53)
so, the invers differential operator L™ is taking a shape:
T T
L'()y=a" / gt bemme / be™(\)dadx.
0 0 (54)
In general, the general solution for this equation as below:
Y(x) = p(x) + L™ fix,y).
For this case, we will introduce as below
Example 6.1.
When we put m =0,b =1,a =3, in Eq(52). we get
4 4 . .
y'+ -y =e"(1+—)+e* —y°
vy =t o) v 55)

with initial condition y(0) = l,yO(O) =1.

The diffrerntial operator L for this equation:

d d .
L() =2 ' —a 72—
()= dx dx ( ) (56)
and, the invers diffrerntial operator L' as below

- = z_l/ / dldl

goning on as before we get the recursive relationship

4
1/0—1+L1€’(1+ ) e*®

yn+l =—L—1A4n,n > 0. (58)
The Adomian polynomials for the non-linear part {y) = )7, as follows
Ao =yp
0

A, = 201,
Ay=13+ 2Y0Y2,

Thus, the first little components are as below:
1+ +3 2 +5 a3 + 19 24 +;1?5 +89 20 n 101 ilf7+ 51 28 + 37 2° + 331 210 +
Yo = x S
Yo ‘ 5 18 168 24 6480 25200 49280 155520 6739200
—x2 2 112* 79x° 719325 927 24472°% 16819zY 363859 10 N
1 —_— —— J— — — — — —
Ui 10 9 140 1800 340200 980 665280 12247200 756756000
2t 192° 157325 91127 1050192% 22675372 1413971 210

140 71800 T 170100 T 147000 T 20937600 T 1285956000 ~ 1746360000 |

Yo =

the general solution ) ‘ ) 7
(2) = Yot + Ltz x? L2 x? N Tl z° N 139 2° N 901 z” N 51773 2®
; _ _ - L
i o = 2 6 24 120 75600 882000 59875200
3229943 27 34323637 z1°

+5143824000 * 90810720000
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Table 5. Difference between ADM solution and exact solution

X Exact ADM Error
0.0 | 1.0000 | 1.0000 | 0000
0.1 | 1.10517 | 1.10517 | 00000
0.2 | 1.2214 | 1.2214 | 00000
0.3 | 1.34986 | 1.34986 | 00000
0.4 | 1.49182 | 1.49183 | 0.00001
0.5 | 1.64872 | 1.64874 | 0.00002
0.6 | 1.82212 | 1.82219 | 0.00007
0.7 | 2.01375 | 2.01396 | 0.00021
0.8 | 2.22554 | 2.2261 0.00056
0.9 | 2.4596 | 2.46097 | 0.0013

1

- [—Exact— ADM |
Figure 5. The Approximation for ADM and Exact solution

1

Table 5. Displays the comparison betweeen results of the Adomian decomposition method and the exact solutions calculate
for some chosen values. We can get from figure 5. that the (ADM) is correct, more active and converges to the exact
solution.

Case 7. When a=b, n=-m, in Eq(1).
The resulting differential equation is:

2b .
Y+ =y + (—m® +
x

b(b—1) ,
—_— )Y = €T,

= w=Iy) (59)
with the initial conditions

¥(0)=ay" (0)=b.
The differential operator L for this equation is:

o, d
L() = ;7—1) ,—mx 3211141'_. 71) ,—ma (-
() =2 dz"  dr' ( ), (60)

we can rewrite equation (59) as below

Ly =f(xy), 61)
and, the invers differential operator L™ for this equation is:

L*l () — ;,L,fbem,r /J 872:1:.1' /‘l J'bﬁ)«"”r(.)(1;17(1;17.
0 0

(62)

by taken the invers differential operator L™ in both parts(61), we have

1(x) = p(x) + L7 fx, ).
For this case, we will give illustrate example as follows.

Example 7.1
r . 1
When we put 77t = vV —1 = 7 and b=3in Eq.(59), we get:
1

1 4 15
A e = tat ot -y

; 4 , (63)
1
This equation, is Bessel’s equation of order 2.
The differential operator L for this equation as below:
d 5 d
L() =z te™—e 2" —xe'(.
() dx dx ( ) (64)
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so, the invers differential operator L™ for this equation is:
. T T »
L'()=ate™ / e / re "(.)dxdr,
JO JO

we can rewrite the Eq.(63), we have
=4

(65)

15 .
Ly:—+1?2+334—y2
4 , (66)
by taking invers differential operator L™! in both parts(66), we have

15 ,
y(x) = Lil(— + a4+t — y2) _ L*IyQ

4 , (67)
so, the recursive relation we get
15 2, 4 _ 2
Ylxr)=—+a"+2 —Y°,,
Yo(x) = - y .
And
119
Yny I(I) =—L"y" (69)
The Adomian polynomials for the non-linear part f{y) = 37, as follows
Ap = 'U(Z) ;
Ay = 2yot,
Az = yi + 2youe,
consequently, the first components are as below:
2 4zt n 428
0= ey
Yy 63 | 143,
4 26 n 3228 N 136160 x'° N 128 212 N 64 21
i = —e
¥ 143 16065 = 226459233 = 5180175 16011567, _
32210 + 69248 112 + 1231670144 x4 " 132321491968 216
Yo =
Y27 57057 T 1320044625 | 79825747336335 | 142666820076956175
96699877888 '8 n 4384768 2%° n 2048 2%2
699297024827275875 = 927450404305425 = 4430480646735°
The approximant is this as below:
y(@) =yo +y1 +y2 =
2 4 2 + 8 26 + 3228 n 263168 x1° + 101888 12 + 1550742464 !4
T
6 143 16065 226459233 1320944625  79825747336335.
132321491968 216 96699877888 x1* 4384768 2% 2048 2%

142666820076956175 i 699297024827275875 * 927450404305425 * 4430480646735

Table 6. Difference between ADM solution and exact solution

X Exact | ADM Error

0 00001 00001 0000

0.1 | 0.01 0.0100064 | 0.0000064
0.2 | 0.04 0.0401052 | 0.000105
0.3 | 0.09 0.090552 | 0.000552
04 |0.16 0.161856 | 0.00001
0.5 | 0.25 0.254851 0.004851

-1 .5 fl. 5
— Exact —— ADM
Figure 6. The Approximation for ADM and Exact solution
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Table 6. Displays the comparison betweeen results of the Adomian decompo sition method and the exact solutions
calculate for some chosen values. We can look from figure 6. that the (ADM) is correct, more active and converges to the
exact solution.

IV. CONCLUSION

Adomian decomposition method (ADM) is an effective organizational methed for solving singular and nonsingular initial
value problem of second order ordinary differential equations. We have explained a new differential operator for solving
these equations such as Multi singular equation, Bessel’s equation and Oscillatory systems. We will give different cases
and illustrative examples (1-7), to explain this method. (ADM) is powerfule, active, more accurate, so it leads us to
approximate solution from exact solution. Also it has high efficiency of initial value problem.
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