EPH - International Journal of Mathematics and Statistics

ISSN (Online): 2208-2212 Volume 2 Issue 1 May 2016

DOI:https://doi.org/10.53555/eijms.v6i1.47

WEAK FORMS OF ω−OPEN SETS

Mohammed Al-Hawmi1 , Amin Saif2 and Yahya Awbal

2 *Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen* *1,3*Department of Mathematics, Faculty of Education, Arts and Sciences, University of Saba Region, Mareb, Yemen*

**Corresponding Author:-*

Abstract:-

The principle purpose of this paper is to introduce and study some new classes of sets in topological spaces which are finer than the classes of open sets and ω−open sets. The continuity via these classes will be introduced and studied.

Keywords:-

Open set; Generalized Open set; Decomposition of continuity.

AMS classification: Primary 54A05, 54A10, 54C10

1 INTRODUCTION

In general topology, many authors introduced and studied some classes of weak or strong forms of open sets in topological spaces. In 1970 Levine, [6], introduced the notion of a gen eralized open sets which is weak form of open sets. In 1982 Hdeib [4] introduced the notion of a ω−open sets which is weak form of open sets. In 1983 the authors [1] introduced the weak form for an open set which is called a β−open set. In 2005 Al-Zoubi [2] introduced the generalization property of ω−open sets to get the weak form of ω−open sets. In 2009 Noiri and Noorani [7] introduced the notion of $βω$ −open set which is weak form for a ω −open sets and a β −open sets.

This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the concept of generalized $\beta\omega$ -open sets by utilizing the $\beta\omega$ -closure operator. Furthermore, the relationship with the other known sets will be studied. In Section 4 we introduce the notions of $\beta\omega$ –continuous, generalized $\beta\omega$ –continuous, Slightly and Contra βω−Continuous functions.

2 Preliminaries

For a topological space (X,τ) and *A* ⊆ *X*, throughout this paper, we mean *Cl*(*A*) and *Int*(*A*) the closure set and the interior set of *A*, respectively.

Theorem 2.1. [5] For a topological space (X, τ) and $A, B \subseteq X$, if *B* is an open set in *X* then $Cl(A) \cap B \subseteq Cl(A \cap B)$. **Theorem 2.2.** [5] For a topological space (X, τ) , 1. *Cl*(*X* − *A*) = *X* − *Int*(*A*) for all $A \subseteq X$.

2. *Int*($X - A$) = $X - Cl(A)$ for all $A \subseteq X$.

Definition 2.3. [6] A subset *A* of a topological space (X, τ) is called *generalized closed* (simply *g*−closed) *set*, if $Cl(A) \subseteq$ *U* whenever $A \subseteq U$ and *U* is open subset of (X, τ) . The complement of *g*−closed set is called *generalized open* (simply *g*−open) *set*.

Theorem 2.4. [6] Every closed set is a *g*−closed set.

Definition 2.5. A topological space (X, τ) is called:

1. *T*1*/*2−*space* [6] if every *g*−closed set is closed set.

2. *T*₁−*space* [5] if for each disjoint point x 6= $y \in X$, there are two open sets *G* and *H* in *X* such that $x \in H$, $y \in G$, *x* ∈*/ G* and *y* ∈*/ H*.

Theorem 2.6. [3] A topological space (X,τ) is $T_{1/2}$ −*space* if and only if every singleton set is open or closed set.

Theorem 2.7. [5] A topological space (X, τ) is T_1 −space if and only if every singleton set is closed set.

Definition 2.8. [4] A subset *A* of a space *X* is called ω −*open set* if for each $x \in A$, there is an open set U_x containing *x* such that U_x − *A* is a countable set. The complement of a ω -open set is called a ω -closed set. The set of all ω -closed sets in *X* denoted by $\omega C(X, \tau)$ and the set of all ω −open sets in *X* denoted by $\omega O(X, \tau)$.

Theorem 2.9. [4] Every open set is ω−open set.

Theorem 2.10. [4] For a topological space (X, τ) , the pair $[X, \omega O(X, \tau)]$ forms a topological space. For a topological space (X, τ) and $A \subseteq X$, the ω -closure set of *A* is defined as the intersection of all ω -closed subsets of *X* containing *A* and is denoted by $Cl_{\omega}(A)$. The ω −interior set of *A* is defined as the union of all ω −open subsets of *X* contained in *A* and is denoted by $Int_{\omega}(A)$.

Definition 2.11. [2] A subset *A* of a space *X* is called generalized ω −closed set (simply g ω −closed) *set* if $Cl_{\omega}(A) \subseteq U$ whenever *A* ⊆ *U* and *U* is open set. The complement of generalized ω−closed set is called generalized ω−open set (simply gω−open) *set*.

Theorem 2.12. [2] Every *g*−closed set is a gω−closed set.

Definition 2.13. [7] A subset *A* of a topological space (X, τ) is called $\beta\omega$ -open set if $A \subseteq Cl(Int_{\omega}(Cl(A)))$. The complement of βω−open set is called βω−closed set. The set of all βω−closed sets in *X* denoted by βωC(X,τ) and the set of all βω−open sets in *X* denoted by $\beta \omega O(X, \tau)$.

Theorem 2.14. [7] The union of arbitrary of $\beta\omega$ −open sets is $\beta\omega$ −open set.

Theorem 2.15. [7] Every ω −open set is $\beta\omega$ −open set.

Definition 2.16. [5] A function f : $(X, \tau) \to (Y, \rho)$ of a space (X, τ) into a space (Y, ρ) is called *continuous function* if $f^{-1}(U)$ is an open set in *X* for every open set *U* in *Y* .

Definition 2.17. A function f : $(X,\tau) \rightarrow (Y,\rho)$ of a space (X,τ) into a space (Y,ρ) is called:

1. *g*−*continuous function* [6] if $f¹(U)$ is a *g*−open set in *X* for every open set *U* in *Y*.

- 2. ω−*continuous function* [4] if for each $x \in X$ and for an open set G in Y containing $f(x)$, there is a ω−open set U in X containing *x* such that $f(U) \subseteq G$.
- 3. gω–*continuous function* [2] if f ¹(*U*) is a gω–open set in *X* for every open set *U* in*Y*.

Theorem 2.18. [6] Every continuous function is *g*−continuous function.

Theorem 2.19. [4] A function $f: (X,\tau) \to (Y,\rho)$ is a ω -continuous function if and only if $f^{-1}(U)$ is a ω -open set in *X* for every open set *U* in *Y* .

Theorem 2.20. [4] Every continuous function is ω−continuous function.

Theorem 2.21. [2] Every ω−continuous function is gω−continuous function.

Theorem 2.22. [2] Every *g*−continuous function is gω−continuous function.

3 Generalized βω−**open sets**

For a topological space (X, τ) and $A \subseteq X$, the $\beta\omega$ -closure set of *A* is defined as the intersec tion of all $\beta\omega$ -closed subsets of *X* containing *A* and is denoted by *Cl*βω(*A*). The βω−interior set of *A* is defined as the union of all βω−open subsets of *X* contained in *A* and is denoted by *Int*_{βω}(*A*). From Theorem (2.14), $Cl_{\beta\omega}(A)$ is a $\beta\omega$ -closed subsets of *X* and *Int*_{βω}(*A*) is βω−open subsets of *X*.

Definition 3.1. A subset *A* of a topological space (X, τ) is called generalized $\beta\omega$ −closed (simply $G_{\beta\omega}$ −closed) *set*, if $Cl_{\beta\omega}(A)$ ⊆ *U* whenever *A* ⊆ *U* and *U* is open subset of (X,τ). The complement of *G*βω−closed set is called generalized βω−*open* (simply *G*βω−open) *set*.

For a topological space (X,τ), the set of all $G_{\beta\omega}$ -closed sets in *X* denoted by $G_{\beta\omega}C(X,\tau)$ and the set of all $G_{\beta\omega}$ -open sets in *X* denoted by $G_{\beta\omega}O(X,\tau)$.

Example 3.2. For any topological space (X,τ) , if *X* is a countable then it's clear that every subset of *X* is i a both *G*βω−closed and *G*βω−open set. That is, $G_{\beta\omega}O(X,\tau)=G_{\beta\omega}C(X,\tau)=P(X),$

where $P(X)$ is the power of X.

Example 3.3. Let (R, τ_u) be the real usual topological space on the set of real numbers R. The rational set *Q* is a $G_{\beta\omega}$ -closed set, since the irrational set *IR* is a $\beta\omega$ -open set, that is, $Cl_{\beta\omega}(Q) = Q$.

Theorem 3.4. Any a countable subset of a topological space (X,τ) is a $G_{\beta\omega}$ -closed set in *X*. *Proof.* Let *A* be a countable subset of a topological space (X, τ) . Then *A* is a $\beta\omega$ -closed set, that is, $Cl_{\beta\omega}(A) = A$. That is, *A* is a $G_{\beta\omega}$ −closed set. □

Theorem 3.5. Every $\beta\omega$ −open set is $G_{\beta\omega}$ −open set.

Proof. Let *A* be βω−open subset of a topological space (X, τ) . Then $X - A$ is βω−closed set. Hence $X - A = Cl_{\beta\omega}(X - A)$ *U* whenever $X - A ⊆ U$ and *U* is open set. That is, *A* is $G_{\beta\omega}$ -open set. $□$

Corollary 3.6. Every βω−closed set is *G*βω−closed set. The converse of the last theorem need not be true.

Example 3.7. In topological space (R, τ) , R is the set of real numbers and $\tau = \{\emptyset, R, R - \{2, 3\}\}\$, the set $R - \{2\}$ is $G_{\beta\omega}$ -closed set but it is not *βω*−closed set.

Theorem 3.8. Let (X, τ) be a topological space. If (X, τ) is a $T_{1/2}$ −space then every $G_{\beta\omega}$ −closed set in *X* is $\beta\omega$ −closed set in *X*.

Proof. Let *A* be a $G_{\beta\omega}$ -closed set in *X*. Suppose that *A* is not $\beta\omega$ -closed set. Then there is at least $x \in Cl_{\beta\omega}(A)$ such that *x /*∈ *A*. Since (X,τ) is a *T*1*/*2−space then by Theorem (2.6), {*x*} is an open or closed set in *X*. If {*x*} is a closed set in *X* then *X* − {*x*} is an open. Since *x* /∈ *A* then $A \subseteq X - \{x\}$. Since *A* is a $G_{\beta\omega}$ –closed set and $X - \{x\}$ is an open subset of *X* containing *A*, then $Cl_{\beta\omega}(A) \subseteq X - \{x\}$. Hence $x \in X - Cl_{\beta\omega}(A)$ and this a contradiction, since $x \in Cl_{\beta\omega}(A)$. If $\{x\}$ is an open set then it is $\beta\omega$ -open set. Since $x \in Cl_{\beta\omega}(A)$ then we have $\{x\} \cap A$ 6= \emptyset . That is, $x \in A$ and this a contradiction. Hence *A* is a βω−closed set in *X*. \Box

Theorem 3.9. Every gω−closed set is *G_{βω}*−closed set. *Proof.* It is clear, since $Cl_{\beta\omega}(A) \subseteq Cl_{\omega}(A)$. The converse of above theorem no need be true.

Example 3.10. In topological space (R, τ) , *R* is the set of real numbers and $\tau = \{\emptyset, R, IR \cup \{2\}\}\$, where *IR* is a set of irrational numbers, the set of rational numbers *Q* is βω−open set. That is, *IR* is βω−closed set and thus *Cl*βω(*IR*) = *IR*.

 \Box

Hence *IR* is a *G*βω−closed set. Since *Q* is not a ω−open set, then *IR* is not a ω−closed set, that is, *Cl*ω(*IR*) 6= *IR*. Note that *IR* ⊆ *IR* ∪ {2} and *IR* ∪ {2} but *Cl*_ω(*IR*) * *IR* ∪ {2}, note that for example, 3 ∈ *Cl*_ω(*IR*) and 3 ∈/*IR* ∪ {2}. That is, the set *IR* is not gω−closed set.

Definition 3.11. A topological space (X, τ) is called anti-locally countable space if each nonempty open set in *X* is uncountable set.

Lemma 3.12. [7] Let (X, τ) be anti-locally countable space. Then

1. *Int*(*A*) = *Int*_ω(*A*) for every ω -closed set *A* in *X*. 2. $Cl(A) = Cl_ω(A)$ for every $ω$ -open set *A* in *X*.

Lemma 3.13. For a topological space (X,τ) and $A \subseteq X$, the following hold:

1. *Int_{βω}* $(X - A) = X - Cl_{\beta\omega}(A)$.

2. $Cl_{\beta\omega}(X-A) = X - Int_{\beta\omega}(A)$.

Proof. 1. Since $A \subseteq Cl_{\beta\omega}(A)$, then $X - Cl_{\beta\omega}(A) \subseteq X - A$. Since $Cl_{\beta\omega}(A)$ is a $\beta\omega$ -closed set then $X - Cl_{\beta\omega}(A)$ is a $\beta\omega$ -open set. Then

$$
X - Cl_{\beta\omega}(A) = Int_{\beta\omega}[X - Cl_{\beta\omega}(A)] \subseteq Int_{\beta\omega}(X - A).
$$

For the other side, let $x \in Int_{\beta\omega}(X-A)$. Then there is $\beta\omega$ -open set *U* such that $x \in U \subseteq X-A$. Then $X-U$ is a $\beta\omega$ -closed set containing *A* and x /∈ $X - U$. Hence x /∈ $Cl_{\beta\omega}(A)$, that is, $x \in X - Cl_{\beta\omega}(A)$. 2. Similar for the part(1). \Box

Definition 3.14. A subset *A* of a topological space (X, τ) is called S_{ω} −open set if $A \subseteq Int_{\omega}(Cl_{\omega}(A))$. The complement of *S*_ω−open set is called *S*_ω−closed set. The set of all

*S*ω−closed sets in *X* denoted by *S*ω*C*(X,τ) and the set of all *S*ω−open sets in *X* denoted by *S*ω*O*(X,τ).

Theorem 3.15. Let (X, τ) be anti-locally countable space and $\beta \omega O(X, \tau) = S_{\omega} O(X, \tau)$. Then

1. *Cl*(*A*) = $Cl_{\omega}(A) = Cl_{\beta\omega}(A)$ for every ω -open set *A* in *X*.

2. *Int*(*A*) = $Int_{\omega}(A) = Int_{\omega}(A)$ for every ω -closed set *A* in *X*.

Proof. (1) Let *A* be a ω -open set in *X*. It is clear from Lemma (3.12) that $Cl(A) = Cl_{\omega}(A)$ and it is clear that that $Cl_{\beta\omega}(A)$ ⊆ *Cl*ω(*A*). Now we need to prove that *Cl*ω(*A*) ⊆ *Cl*βω(*A*). Let *x /*∈ *Cl*βω(*A*). Then there is a βω−open set *O* in *X* such that *O* ∩ *A* = ∅. Since βωO(X,τ) = *S*ω*O*(X,τ), then *O* ⊆ *Int*ω(*Cl*ω(*O*). Hence *Int*ω(*Cl*ω(*O*) is a ω−open set containing *x* and

$$
Int_{\omega}(Cl_{\omega}(O)) \cap A = Int_{\omega}(Cl_{\omega}(O)) \cap Int_{\omega}(A)
$$

= $Int_{\omega}[Cl_{\omega}(O) \cap A] \subseteq Cl_{\omega}(O) \cap A$
 $\subseteq Cl_{\omega}(O \cap A) = Cl_{\omega}(\emptyset) = \emptyset.$

That is, $x \in Cl_{\omega}(A)$. Hence $Cl_{\beta\omega}(A) \subseteq Cl_{\omega}(A)$.

(2) Let *A* be a ω−closed set in *X*. Then by the part(1), Lemma (3.13) and Theorem (2.2), we get that

 $X - Int_{\beta\omega}(A)$ = $Cl_{\beta\omega}(X - A) = Cl_{\omega}(X - A) = X - Int_{\omega}(A)$.

That is, $Int_{\omega}(A) = Int_{\beta\omega}(A)$. By Lemma (3.12), we get that $Int(A) = Int_{\omega}(A) = Int_{\beta\omega}(A)$.

Theorem 3.16. Let (X, τ) be anti-locally countable space and $\beta \omega O(X, \tau) = S_{\omega}O(X, \tau)$. Then *X* is *T*₁− space if and only if every $G_{\beta\omega}$ -closed set is a $\beta\omega$ -closed set in *X*.

Proof. Necessity: By Theorem (2.7), *X* is a *T*_{1/2}− space. Then, by Theorem (3.8), every *G*_{βω}−closed set is a βω−closed set in X .

Sufficiency: Let *x* ∈ *X* be an arbitrary point in *X*. By using Theorem (2.7), to prove that *X* is a *T*₁− space, we will prove that $\{x\}$ is a closed set in *X*. Suppose that $\{x\}$ is not closed set in *X*. Then $A = X - \{x\}$ is not open set. Then *X* is the only open set containing *A* and hence $Cl_{\beta\omega}(A) \subseteq X$, that is, *A* is a $G_{\beta\omega}$ -closed set in *X*. Then, by assumption, *A* is a $\beta\omega$ -closed set. That is, $Cl_{\beta\omega}(A) = A$. Since $X - \{x\}$ is a ω -open set, then by Theorem (3.15)

$$
Cl(A) = Cl_{\omega}(A) = Cl_{\beta\omega}(A) = A.
$$

That is, $\{x\}$ is an open set and this contradicts the fact (X, τ) be anti-locally countable space. Then *X* is *T*₁−space. \Box

Theorem 3.17. If *A* is a $G_{\beta\omega}$ -closed set in a topological space (X,τ) and *B* is a closed set in *X* then *A* ∩ *B* is a $G_{\beta\omega}$ -closed set.

Proof. Let *U* be an open subset of *X* such that $A ∩ B ⊆ U$. Since *B* is a closed set in *X* then $U ∪ (X − B)$ is an open set in *X*. Since *A* is a *G*_{βω}-closed set in *X* and $A \subseteq U$ ∪ (*X − B*) then $Cl_{\beta\omega}(A) \subseteq U$ ∪ (*X − B*). Hence

$$
Cl_{\beta\omega}(A \cap B) \subseteq Cl_{\beta\omega}(A) \cap Cl_{\beta\omega}(B) \subseteq Cl_{\beta\omega}(A) \cap Cl(B)
$$

=
$$
Cl_{\beta\omega}(A) \cap B \subseteq [U \cup (X - B)] \cap B
$$

$$
\subseteq U \cap B \subseteq U.
$$

Thus, $A \cap B$ is a $G_{\beta\omega}$ -closed set.

Theorem 3.18. A subset *A* of a topological space (X, τ) is a $G_{\beta\omega}$ −open if and only if $F ⊆ Int_{\beta\omega}(A)$ whenever $F ⊆ A$ and F is closed subset of (X, τ) .

Proof. Let *A* be a $G_{\beta\omega}$ −open subset of *X* and *F* be a closed subset of *X* such that $F \subseteq A$.

Then *X* − *A* is a $G_{\beta\omega}$ -closed set in *X*, *X* − *A* ⊆ *X* − *F* and *X* − *F* is an open subset of *X*. Hence Lemma (3.13), *X* − *Int*_{βω}(*A*) $= Cl_{\beta\omega}(X - A) ⊆ X - F$, that is, $F ⊆ Int_{\beta\omega}(A)$.

Conversely, suppose that $F \subseteq Int_{\beta\omega}(A)$ where *F* is a closed subset of *X* such that $F \subseteq A$. Then for any open subset *U* of *X* such that $X - A \subseteq U$, we have $X - U \subseteq A$ and $X - U \subseteq Int_{\beta\omega}(A)$. Then by Lemma(3.13), $X - Int_{\beta\omega}(A) = Cl_{\beta\omega}(X - A) \subseteq U$. Hence *X*−*A* is a $G_{\beta\omega}$ −closed (i.e., *A* is a $G_{\beta\omega}$ −open set). \Box

Theorem 3.19. If *A* is a $G_{\beta\omega}$ -closed subset of a topological space (X,τ) then $Cl_{\beta\omega}(A)$ −*A* contains no nonempty closed set. *Proof.* Suppose that $Cl_{\beta\omega}(A) - A$ contains nonempty closed set *F*. Then

F ⊆ $Cl_{\beta\omega}(A) - A$ ⊆ $Cl_{\beta\omega}(A)$. Since $A ⊆ Cl_{\beta\omega}(A)$ then $F ⊆ X - A$ and so $A ⊆ X - F$. Since *A* is a $G_{\beta\omega}$ -closed set and *X* − *F* is an open subset of *X*, then $Cl_{\beta\omega}(A) \subseteq X - F$ and so $F \subseteq X - Cl_{\beta\omega}(A)$. Therefore *F* ⊆ $Cl_{\beta\omega}(A)$ ∩ $(X - Cl_{\beta\omega}(A)) = \emptyset$ and so $F = \emptyset$. Hence $Cl_{\beta \omega}(A) - A$ contains no nonempty closed set.

 \Box

 \Box

Corollary 3.20. If *A* is a $G_{\beta\omega}$ −closed subset of a topological space (X,τ) then $Cl_{\beta\omega}(A)$ −*A* is a $G_{\beta\omega}$ −open set. *Proof.* By Theorem (3.19), $Cl_{\beta\omega}(A)$ −*A* contains no nonempty closed set and it is clear that $\emptyset \subseteq Int_{\beta\omega}(Cl_{\beta\omega}(A) - A)$ then by Theorem (3.18), $Cl_{\beta\omega}(A) - A$ is a $G_{\beta\omega}$ -open set. □

Theorem 3.21. If *A* is a $G_{\beta\omega}$ -closed subset of a topological space (X,τ) and $B \subseteq X$. If $A \subseteq B \subseteq Cl_{\beta\omega}(A)$ then *B* is a *G*βω−closed set.

Proof. Let *U* be an open set in *X* such that *B* ⊆ *U*. Then $A ⊆ B ⊆ U$. Since *A* is a $G_{\beta\omega}$ -closed set then $Cl_{\beta\omega}(A) ⊆ U$. Since *B* ⊆ *Cl*_{*Bω*} (A) then

$$
Cl_{\beta\omega}(B) \subseteq Cl_{\beta\omega}[Cl_{\beta\omega}(A)] = Cl_{\beta\omega}(A) \subseteq U.
$$

That is, *B* is a $G_{\beta\omega}$ -closed set. \square

Theorem 3.22. Let *A* be a $G_{\beta\omega}$ -closed subset of a topological space (X,τ) . Then $A = Cl_{\beta\omega}(Int_{\beta\omega}(A))$ if and only if $Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A$ is a closed set.

Proof. Let $Cl_{\beta\omega}(Int_{\beta\omega}(A))$ \rightarrow A be a closed set. Since $Int_{\beta\omega}(A) \subseteq A$ and $A \subseteq Cl_{\beta\omega}(A)$, then $Cl_{\beta\omega}(Int_{\beta\omega}(A)) \subseteq Cl_{\beta\omega}(A)$. Then $Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A \subseteq Cl_{\beta\omega}(A) - A$, this implies

*Cl*_{*Bω*}(*Int*_{*Bω*}(*A*)) − *A* ⊆ *X* − *A* ⇒ *A* ⊆ *X* − (*Cl_{βω}*(*Int*_{*Bω*}(*A*)) − *A*)*.*

Since *A* is a $G_{\beta\omega}$ -closed set and $X - (Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A)$ is an open set containing *A*, then $Cl_{\beta\omega}(A) \subseteq X - (Cl_{\beta\omega}(Int_{\beta\omega}(A)))$ *A*), this implies

$$
Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A \subseteq X - Cl_{\beta\omega}(A).
$$

Therefore

 $Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A \subseteq Cl_{\beta\omega}(A) \cap (X - Cl_{\beta\omega}(A)) = \emptyset.$

Hence $Cl_{\beta\omega}(Int_{\beta\omega}(A)) - A = \emptyset$, that is, $Cl_{\beta\omega}(Int_{\beta\omega}(A)) = A$.

Conversely, if $A = Cl_{\beta\omega}(Int_{\beta\omega}(A))$ then $Cl_{\beta\omega}(Int_{\beta\omega}(A))$ − $A = \emptyset$ and hence $Cl_{\beta\omega}(Int_{\beta\omega}(A))$ − A is a closed set.

Theorem 3.23. Let *Y* be an open subset of a topological space (*X*,τ). If *A* is a $\beta\omega$ -open set in (*X*,τ) then *A* \cap *Y* is a $\beta\omega$ -open set in $(Y, \tau|_Y)$.

Proof. Since *A* be a $\beta\omega$ -open set in (X,τ) , then $A \subseteq Cl(Int_{\omega}(Cl(A)))$. Since *Y* is an open set, then by Theorem (2.1),

A ∩ *Y* = (*A* ∩ *Y*) ∩ *Y* ⊆ [($Cl(Int_{\omega}(Cl(A))))$ ∩ *Y*] ∩ *Y* ⊆ *Cl*[*Int*ω(*Cl*(*A*)) ∩ *Y*] ∩ *Y* = *Cl*|*Y* [*Int*ω(*Cl*(*A*)) ∩ *Y*] $=$ *Cl*|*Y*[*Int_ω*(*Cl*(*A*)) ∩ *Int_ω*(*Y*)] = *Cl*|*Y*[*Int_ω*(*Cl*(*A*) ∩ *Y*)] = *Cl*|*Y* [*Int*ω(*Cl*(*A*) ∩ *Y* ∩ *Y*)] ⊆ *Cl*|*Y* [*Int*ω(*Cl*(*A* ∩ *Y*) ∩ *Y*)] = *Cl*|*Y* [*Int*ω(*Cl*|*Y* (*A* ∩ *Y*))] ⊆ *Cl*|*Y* [*Int*ω|*Y* (*Cl*|*Y* (*A* ∩ *Y*))]*.*

Therefore $A \cap Y$ is a $\beta\omega$ −open set in $(Y, \tau|_Y)$.

Theorem 3.24. Let *Y* be an open subset of a topological space (X,τ) . If *A* is a $\beta\omega$ -open set in $(Y,\tau|_Y)$ then *A* is a $\beta\omega$ -open set in (X, τ) .

Proof. Since *A* is a $\beta\omega$ -open set in $(Y, \tau|_Y)$ and since *Y* is an open set, then

$$
A \subseteq Cl_{|Y}(Int_{\omega}|_{Y}(Cl|_{Y}(A))) = Cl((Int_{\omega}|_{Y}(Cl|_{Y}(A))) \cap Y
$$

$$
\subseteq Cl((Int_{\omega}|_{Y}(Cl|_{Y}(A)) \cap Y) = Cl((Int_{\omega}(Cl|_{Y}(A)) \cap Y)
$$

 \Box

$$
= Cl|(Int_{\omega}(Cl|_Y(A) \cap Y)) = Cl|(Int_{\omega}(Cl|_Y(A)))
$$

\n
$$
= Cl|(Int_{\omega}(Cl(A) \cap Y)) \subseteq Cl|(Int_{\omega}(Cl(A \cap Y)))
$$

\n
$$
= Cl|(Int_{\omega}(Cl(A))).
$$

Therefore *A* is a βω−open set in *X*.

Theorem 3.25. Let *Y* be an open subset of a topological space (X, τ) and *A* be a subset of *Y*. Then $Cl_{\beta\omega}|_Y(A) = Cl_{\beta\omega}(A)$ ∩ *Y* .

Proof. Let $x \in Cl_{\beta\omega}|_Y(A)$ and *G* be a $\beta\omega$ -open set in *X* containing *x*. By Theorem (3.23), *G* ∩ *Y* is a $\beta\omega$ -open set in *Y* containing x and since $x \in Cl_{\beta\omega}|_Y(A)$, then $G \cap A = (G \cap Y) \cap A$ 6= \emptyset . Then $x \in Cl_{\beta\omega}(A)$ and since $x \in Y$, this implies x $\in Cl_{\beta\omega}(A)$ ∩ *Y*. That is, $Cl_{\beta\omega}|_Y(A) \subseteq Cl_{\beta\omega}(A)$ ∩ *Y*. On the other side, let $x \in Cl_{\beta\omega}(A)$ ∩ *Y* and *O* be a $\beta\omega$ -open set in *Y* containing *x*. By Theorem (3.24), $O = G \cap Y$ for some $\beta\omega$ -open set *G* in *X*. Since $x \in Cl_{\beta\omega}(A)$, then $G \cap A$ 6= Ø and so $(G \cap Y) \cap A$ 6= \emptyset , since $x \in Y$. Hence $O \cap A$ 6= \emptyset , that is, $x \in Cl_{\beta\omega}|_Y(A)$. Hence $Cl_{\beta\omega}(A) \cap Y \subseteq Cl_{\beta\omega}|_Y(A)$.

Theorem 3.26. Let *Y* be an open subspace of a topological space (X, τ) and $A \subseteq Y$. If *A* is a $G_{\beta\omega}$ -closed subset in *X* then *A* is a *G*_{βω}−closed set in *Y*.

Proof. Let *O* be an open subset in *Y* such that $A \subseteq O$. Then $O = U \cap Y$ for some open set *U* in *X* and so $A \subseteq U$. Since *A* is a $G_{\beta\omega}$ -closed subset of *X*, then $Cl_{\beta\omega}(A) \subseteq U$. By Theorem (3.25) ,

Hence *A* is a $G_{\beta\omega}$ -closed set in *Y*.

$$
Cl_{\beta\omega}|_Y(A) = Cl_{\beta\omega}(A) \cap Y \subseteq U \cap Y = O.
$$

Theorem 3.27. Let *Y* be an open subspace of a topological space (*X*,τ) and $A \subseteq Y$. If *A* is a $G_{\beta\omega}$ -closed subset in *Y* and *Y* is $\beta\omega$ −closed in *X* then *A* is a $G_{\beta\omega}$ −closed set in *X*.

Proof. Let *U* be an open subset in *X* such that $A \subseteq U$. Then $A \subseteq U \cap Y$ and $U \cap Y$ is open set in *Y*. Since A is a $G_{\beta\omega}$ -closed subset in *Y*, then $Cl_{\beta\omega}|_Y(A) \subseteq U \cap Y$. Since *Y* is an open set in *X* and it is $\beta\omega$ -closed in *X* then By Theorem (3.25), $Cl_{\beta\omega}(A) = Cl_{\beta\omega}(A \cap Y) \subseteq Cl_{\beta\omega}(A) \cap Cl_{\beta\omega}(Y) = Cl_{\beta\omega}(A) \cap Y = Cl_{\beta\omega}|_Y(A) \subseteq U \cap Y \subseteq U.$ Hence *A* is a $G_{\beta\omega}$ -closed set in *X*. \Box

4 βω−**Continuous functions**

Definition 4.1. A function f : $(X, \tau) \to (Y, \rho)$ of a topological space (X, τ) into a space (Y, ρ) is called $\beta\omega$ −*continuous* if $f^{-1}(U)$ is a βω−open set in *X* for every open set *U* in *Y* .

Theorem 4.2. A function $f: (X,\tau) \to (Y,\rho)$ of a topological space (X,τ) into a space (Y,ρ) is $\beta\omega$ -continuous if and only if $f^{-1}(F)$ is a $\beta\omega$ -closed set in *X* for every closed set *F* in *Y*.

Proof. Let $f: (X, \tau) \to (Y, \rho)$ be a $\beta\omega$ -continuous and *F* be any closed set in *Y*. Then $f^{-1}(Y - F) = X - f^{-1}(F)$ is a $\beta\omega$ -open set in *X*, that is, $f^{-1}(F)$ is $\beta\omega$ -closed set in *X*. Conversely, suppose that $f^{-1}(F)$ is a $\beta\omega$ -closed set in *X* for every closed set *F* in *Y*. Let *U* be any open set in *Y*. Then by the hypothesis, $f^{-1}(Y-U) = X - f^{-1}(U)$ is a $\beta\omega$ -closed set in *X*, that is, $f^{-1}(U)$ is a $\beta\omega$ −open set in *X*. Hence *f* is a $\beta\omega$ −continuous. □

Theorem 4.3. Every ω−continuous function is βω−continuous function.

Proof. Let $f: (X, \tau) \to (Y, \rho)$ be a ω -continuous function and *U* be any open set in *Y*. Then $f^{-1}(U)$ is a ω -open set in *X* and hence $f⁻¹(U)$ is a $\beta\omega$ -open set in *X*. That is, *f* is a $\beta\omega$ -continuous function. \Box The converse of the last theorem need not be true.

Example 4.4. Let $f: (R, \tau) \rightarrow (R, \rho)$ be a function defined by $f(r) = r$, where

 $\tau = \{ \emptyset, R \}$ and $\rho = \{ \emptyset, R, \{2\} \}.$ The function *f* is a $\beta\omega$ -continuous, since $f^{-1}(\{2\}) = \{2\}$ and $f^{-1}(R) = R$ are $\beta\omega$ -open sets in (R, τ) . The function *f* is not ω −continuous, since $f^{-1}(\{2\}) = \{2\}$ is not ω −open set in (R, τ) .

Theorem 4.5. If $f: (X, \tau) \to (Y, \rho)$ is a $\beta\omega$ -continuous function then for each $x \in X$ and each open set *U* in *Y* with $f(x) \in Y$ *U*, there exists a $\beta\omega$ -open set *V* in *X* such that $x \in V$ and $f(V) \subseteq U$.

Proof. Let *x* ∈ *X* and *U* be any open set in *Y* containing *f*(*x*). Put $V = f^{-1}(U)$. Since *f* is a $\beta\omega$ -continuous then *V* is a $\beta\omega$ -open set in *X* such that $x \in V$ and $f(V) \subseteq U$.

conversely, Let *U* be any open set in *Y*. Let $x \in f^{-1}(U)$. Then $f(x) \in U$ and hence by the hypothesis, there exists a $\beta\omega$ -open set V in X such that $x \in V$ and $f(V) \subseteq U$. Hence $x \in V \subseteq f^{-1}(U)$, that is, $f^{-1}(U)$ is a $\beta\omega$ -open set in X. That is, f is a $\beta\omega$ -continuous. \square

Theorem 4.6. Let f : $(X, \tau) \rightarrow (Y, \rho)$ be a function of a space (X, τ) into a space (Y, ρ) . Then *f* is a $\beta\omega$ -continuous if and only if *f*[$Cl_{βω}(A)$] ⊆ $Cl(f(A))$ for all *A* ⊆ *X*.

Proof. Let *f* be a $\beta\omega$ -continuous and *A* be any subset of *X*. Then *Cl*(*f*(*A*)) is a closed set in *Y*. Since *f* is a $\beta\omega$ -continuous then by Theorem (4.2) , $f¹[Cl(f(A))]$ is a $\beta\omega$ -closed set in *X*. That is,

$$
Cl_{\beta\omega}[f^{-1}[Cl(f(A))]] = f^{-1}[Cl(f(A))]
$$

 \Box

 \Box

Since *f*(*A*) ⊆ *Cl*(*f*(*A*)) then *A* ⊆ *f*⁻¹[*Cl*(*f*(*A*))]. This implies, *.*

 $Hence f[Cl_{\beta\omega}(A)] \subseteq Cl(f(A)).$

Conversely, let *H* be any closed set in *Y*, that is, $Cl(H) = H$. Since $f^{-1}(H) \subseteq X$. Then by the hypothesis, $f[Cl_{\beta\omega}[f^{-1}(H)]] \subseteq Cl[f(f^{-1}(H))] \subseteq Cl(H) = H.$

This implies, $Cl_{\beta\omega}[f^1(H)] \subseteq f^1(H)$. Hence $Cl_{\beta\omega}[f^1(H)] = f^1(H)$, that is, $f^1(H)$ is a $\beta\omega$ -closed set in X. Therefore f is a $\beta\omega$ -continuous. \square

Theorem 4.7. Let $f: (X,\tau) \to (Y,\rho)$ be a function of a space (X,τ) into a space (Y,ρ) . Then *f* is $\beta\omega$ -continuous if and only if $Cl_{\beta\omega}(f^{-1}(B))$ ⊆ $f^{-1}(Cl(B))$ for all $B \subseteq Y$.

Proof. Let *f* be a βω−continuous and *B* be any subset of *Y* . Then *Cl*(*B*) is a closed set in *Y* . Since *f* is a ω−continuous then by Theorem(4.2), $f⁻¹[Cl(B)]$ is a $\beta\omega$ –closed set in *X*. That is,

$$
Cl_{\beta\omega}[f^{-1}[Cl(B)]] = f^{-1}[Cl(B)]
$$

Since *B* ⊆ *Cl*(*B*) then $f^{-1}(B)$ ⊆ $f^{-1}[Cl(B)]$. This implies,

$$
Cl_{\beta\omega}(f^{-1}(B)) \subseteq Cl_{\beta\omega}[f^{-1}[Cl(B)]] = f^{-1}[Cl(B)]
$$

Hence $Cl_{\beta\omega}(f^{-1}(B)) \subseteq f^{-1}[Cl(B)].$

Conversely, Let *H* be any closed set in *Y*, that is, $Cl(H) = H$. Since $H \subseteq Y$. Then by the hypothesis, $Cl_{\beta\omega}(f^{-1}(H)) \subseteq f^{-1}(Cl(H)) = f^{-1}(H).$

This implies, $Cl_{\beta\omega}[f^1(H)] \subseteq f^1(H)$. Hence $Cl_{\beta\omega}[f^1(H)] = f^1(H)$, that is, $f^1(H)$ is a $\beta\omega$ -closed set in X. Hence f is a $\beta\omega$ -continuous. \square

Theorem 4.8. Let $f: (X,\tau) \to (Y,\rho)$ be a function of a space (X,τ) into a space (Y,ρ) . Then *f* is $\beta\omega$ -continuous if and if $f^{-1}(Int(B)) \subseteq Int_{\beta\omega}[f^{-1}(B)]$ for all $B \subseteq Y$.

Proof. Let *f* be a $\beta\omega$ -continuous and *B* be any subset of *Y*. Then *Int*(*B*) is an open set in *Y*. Since *f* is a ω -continuous then $f⁻¹[Int(B)]$ is a $\beta\omega$ -open set in *X*. That is,

$$
Int_{\beta\omega}[f^{-1}[Int(B)]] = f^{-1}[Int(B)]
$$

Since $Int(B) \subseteq B$ then $f^{−1}[Int(B)] \subseteq f^{−1}(B)$. This implies,

 $Hence f⁻¹(Int(B)) \subseteq Int_{\beta\omega}[f⁻¹(B)].$

Conversely, let *U* be any open set in *Y*, that is, *Int*(*U*) = *U*. Since $U \subseteq Y$. Then by the hypothesis, $f^{-1}(U) = f^{-1}(Int(U)) \subseteq$ $Int_{\beta\omega}[f^{-1}(U)].$

.

This implies, $f^1(U) \subseteq Int_{\beta\omega}[f^1(U)]$. Hence $f^1(U) = Int_{\beta\omega}[f^1(U)]$, that is, $f^1(U)$ is a $\beta\omega$ -open set in X. Hence f is $\beta\omega$ -continuous. \Box

Definition 4.9. A function $f: (X,\tau) \to (Y,\rho)$ of a topological space (X,τ) into a space (Y,ρ) is called *generalized* $\beta\omega$ −continuous (simply $G_{\beta\omega}$ −continuous) *function*, if $f^{-1}(U)$ is a $G_{\beta\omega}$ −open set in *X* for every open set *U* in *Y*.

Theorem 4.10. A function $f: (X,\tau) \to (Y,\rho)$ of a topological space (X,τ) into a space (Y,ρ) is $G_{\beta\omega}$ -continuous if and only if $f^{-1}(F)$ is a $G_{\beta\omega}$ −closed set in *X* for every closed set *F* in *Y*.

Proof. Let $f: (X, \tau) \to (Y, \rho)$ be a $G_{\beta\omega}$ -continuous and *F* be any closed set in *Y*. Then $f^{-1}(Y - F) = X - f^{-1}(F)$ is a $G_{\beta\omega}$ -open set in *X*, that is, $f^1(F)$ is $G_{\beta\omega}$ -closed set in *X*. Conversely, suppose that $f^1(F)$ is a $G_{\beta\omega}$ -closed set in *X* for every closed set *F* in *Y*. Let *U* be any open set in *Y*. Then by the hypothesis, $f'(Y-U) = X - f'(U)$ is is a $G_{\beta\omega}$ -closed set in *X*, that is, $f^{-1}(U)$ is a *G*_{βω}−open set in *X*. Hence *f* is a *G*_{βω}−continuous.

Theorem 4.11. Every $\beta\omega$ −continuous function is $G_{\beta\omega}$ −continuous function. *Proof.* Let $f: (X,\tau) \to (Y,\rho)$ be a $\beta\omega$ -continuous function and *U* be any open set in *Y*. Then $f^{-1}(U)$ is a $\beta\omega$ -open set in *X* and by Theorem (3.5), $f^1(U)$ is a $G_{\beta\omega}$ -open set in *X*. That is, *f* is a $G_{\beta\omega}$ -continuous function. The converse of the last theorem need not be true.

Example 4.12. Let $f: (R, \tau) \rightarrow (R, \rho)$ be a function defined by $f(r) = r$, where

 $\tau = \{\emptyset, R, R - \{2, 3\}\}\$ and $\rho = \{\emptyset, R, \{2\}\}.$

The function *f* is a $G_{\beta\omega}$ -continuous, since $f^{-1}(\{2\}) = \{2\}$ and $f^{-1}(R) = R$ are $G_{\beta\omega}$ -open sets in (R, τ) . The function *f* is not $\beta\omega$ – continuous, since $f^{-1}(\{2\}) = \{2\}$ is not $\beta\omega$ – open set in (R, τ) .

Theorem 4.13. Let $f: (X, \tau) \to (Y, \rho)$ be a function of a $T_{1/2}$ -space (X, τ) into a space (Y, ρ) . If *f* is a $G_{\beta\omega}$ -continuous then it is a $\beta\omega$ -continuous.

Proof. Let f : $(X, \tau) \to (Y, \rho)$ be a $G_{\beta\omega}$ -continuous function and *U* be any open set in *Y*. Then $f^{-1}(U)$ is a $G_{\beta\omega}$ -open set in *X*. Since *X* is a *T*_{1/2}−space then by Theorem (3.8), f' ¹(*U*) is a $\beta\omega$ −open set in *X*. That is, *f* is a $\beta\omega$ −continuous function.

Theorem 4.14. Every gω−continuous function is *G*βω−continuous function. *Proof.* Let $f: (X,\tau) \to (Y,\rho)$ be a gω–continuous function and U be any open set in Y.

Then $f¹(U)$ is a g ω -open set in *X* and by Theorem (3.9), $f¹(U)$ is a $G_{\beta\omega}$ -open set in *X*. That is, *f* is a $G_{\beta\omega}$ -continuous function.

The converse of the last theorem need not be true.

Example 4.15. Let
$$
f: (R, \tau) \rightarrow (R, \rho)
$$
 be a function defined by

where

$$
\tau = \{ \emptyset, R, IR \cup \{2\} \} \text{ and } \rho = \{ \emptyset, R, \{2\} \},
$$

IR is a set of irrational numbers. The function *f* is a $G_{\beta\omega}$ -continuous, since $f^{-1}(\{2\}) = IR$ and $f^{-1}(R) = R$ are $G_{\beta\omega}$ -open sets in (R,τ). The function *f* is not gω−continuous, since $f^{-1}(\{2\}) = IR$ is not gω−open set in (R,τ).

Theorem 4.16. If $f: (X, \tau) \to (Y, \rho)$ is a $G_{\beta\omega}$ -continuous function then for each $x \in X$ and each open set *U* in *Y* with $f(x) \in Y$ *U*, there exists a *G*_{*B*∞}−open set *V* in *X* such that $x \in V$ and $f(V) \subseteq U$.

Proof. Let $x \in X$ and *U* be any open set in *Y* containing $f(x)$. Put $V = f^{-1}(U)$. Since *f* is a $G_{\beta\omega}$ -continuous then *V* is a *G*_{βω}−open set in *X* such that $x \in V$ and $f(V) \subseteq U$.

The converse of the last theorem need not be true.

Example 4.17. Let $f: (R, \tau) \rightarrow (R, \rho)$ be a function defined by

$$
f(x) = \begin{cases} 2, & x \in \{2, 3\} \\ x, & x \notin \{2, 3\} \end{cases}
$$

where

$$
\tau = \{\emptyset, R, R - \{2, 3\}\} \text{ and } \rho = \{\emptyset, R, \{2\}\}.
$$

The function *f* is not $G_{\beta\omega}$ -continuous, since $f^{-1}(\{2\}) = \{2,3\}$ is not $G_{\beta\omega}$ -open set in (R,τ) . On the other hand, for all $x \in R$, {*x*} is a $G_{\beta\omega}$ −open set in (R, τ) .

References

- [1]. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β−open sets and β−continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2]. K. Al-Zoubi, On generalized ω−closed sets, International Journal of Mathematics and Mathematical Sciences, 13 (2005), 20112021.
- [3]. J. Dontchev and H. Maki, On θ−generalized closed sets, Int. J. Math. Math. Sci., 22 (1999), 239-249.
- [4]. H. Z. Hdeib, *w*−closed mappings, Revista Colombiana de Matematicas, 16 (1982), 65-78.
- [5]. F. Helen, 1968, Introduction to General Topology, Boston: University of Massachusetts.
- [6]. N. Levine, Generalized closed sets in topology, Rend. Cric. Mat.Palermo, 2 (1970), 89-96.
- [7]. T. Noiri, A. Al-omari and M. Noorani, Weak forms of ω−open sets and decompositions of continuity, European Journal of Pure and Applied Mathematics 1, (2009), 73-84.