EPH - International Journal of Mathematics and Statistics
ISSN (Online): 2208-2212
Volume 2 Issue 1 May 2016

DOTI:https://doi.org/10.53555/eijms.v6il .47

WEAK FORMS OF o—OPEN SETS
Mohammed Al-Hawmi', Amin Saif? and Yahya Awbal3
’Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen

*13Department of Mathematics, Faculty of Education, Arts and Sciences, University of Saba Region, Mareb, Yemen

*Corresponding Author:-

Abstract:-
The principle purpose of this paper is to introduce and study some new classes of sets in topological spaces which are
finer than the classes of open sets and w—open sets. The continuity via these classes will be introduced and studied.

Keywords:-
Open set; Generalized Open set; Decomposition of continuity.

AMS classification: Primary 54405, 54410, 54C10

©

Volume-2 | Issue-1 | May, 2016

13



1 INTRODUCTION

In general topology, many authors introduced and studied some classes of weak or strong forms of open sets in topological
spaces. In 1970 Levine, [6], introduced the notion of a gen eralized open sets which is weak form of open sets. In 1982
Hdeib [4] introduced the notion of a w—open sets which is weak form of open sets. In 1983 the authors [1] introduced the
weak form for an open set which is called a f—open set. In 2005 Al-Zoubi [2] introduced the generalization property of
w—open sets to get the weak form of w—open sets. In 2009 Noiri and Noorani [7] introduced the notion of fw—open set
which is weak form for a w—open sets and a f—open sets.

This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the concept of
generalized fw—open sets by utilizing the fw—closure operator. Furthermore, the relationship with the other known sets
will be studied. In Section 4 we introduce the notions of fw—continuous, generalized fw—continuous, Slightly and Contra
Pw—Continuous functions.

2 Preliminaries
For a topological space (X;7) and 4 € X, throughout this paper, we mean CI(4) and Int(4) the closure set and the interior
set of 4, respectively.

Theorem 2.1. [5] For a topological space (X,7) and 4,8 C X, if B is an open set in X then CI(4) N B € CI(4 N B).
Theorem 2.2. [5] For a topological space (X,7),

1. ClX—A4A)=X—-Int(4) forall 4 € X.

2. Int(X—A)=X—-Cl(4) forall 4 € X.

Definition 2.3. [6] A subset 4 of a topological space (X,7) is called generalized closed (simply g—closed) set, if Cl(4) €
U whenever 4 € U and U is open subset of (X,7). The complement of g—closed set is called generalized open (simply
g—open) set.

Theorem 2.4. [6] Every closed set is a g—closed set.

Definition 2.5. A topological space (X7) is called:

1. Tip—space [6] if every g—closed set is closed set.

2. Ti—space [5] if for each disjoint point x 6=y € X, there are two open sets G and H in X such thatx € H, y € G,
x€/Gandy€/H.

Theorem 2.6. [3] A topological space (X,7) is Ti»,—space if and only if every singleton set is open or closed set.
Theorem 2.7. [5] A topological space (X,7) is Ti—space if and only if every singleton set is closed set.

Definition 2.8. [4] A subset A of a space X is called w—open set if for each x € A4, there is an open set U, containing x
such that U, — 4 is a countable set. The complement of a w—open set is called a w—closed set. The set of all w—closed
sets in X denoted by wC(X,7) and the set of all w—open sets in X denoted by wO(X;7).

Theorem 2.9. [4] Every open set is w—open set.

Theorem 2.10. [4] For a topological space (X;7), the pair [X,0wO(X,7)] forms a topological space.

For a topological space (X,7) and 4 € X, the w—closure set of 4 is defined as the intersection of all w—closed subsets of
X containing 4 and is denoted by Cl,(4). The w—interior set of 4 is defined as the union of all w—open subsets of X
contained in 4 and is denoted by Int.(A4).

Definition 2.11. [2] A subset 4 of a space X is called generalized w—closed set (simply gw—closed) set if Cl,(4) € U
whenever 4 € U and U is open set. The complement of generalized w—closed set is called generalized w—open set (simply
gw—open) set.

Theorem 2.12. [2] Every g—closed set is a gw—closed set.

Definition 2.13. [7] A subset 4 of a topological space (X,7) is called foww—open set if 4 S Cl(Int.(CI(A4))). The complement
of fw—open set is called fw—closed set. The set of all fw—closed sets in X denoted by fwC(X,7) and the set of all fow—open
sets in X denoted by fwO(X, 7).

Theorem 2.14. [7] The union of arbitrary of fco—open sets is fov—open set.

Theorem 2.15. [7] Every w—open set is foo—open set.

Definition 2.16. [5] A function f: (X,7) — (¥,p) of a space (X;7) into a space (Y,p) is called continuous function if f(U)
is an open set in X for every open set Uin Y.

Definition 2.17. A function f: (X,7) — (¥,p) of a space (X,7) into a space (Y,p) is called:
1. g—continuous function [6] if f1(U) is a g—open set in X for every open set Uin Y.
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2. w—continuous function [4] if for each x € X and for an open set G in Y containing f{x), there is a w—open set U in X
containing x such that {U) € G.
3. gw—continuous function [2] if f1(U) is a go—open set in X for every open set UinY .

Theorem 2.18. [6] Every continuous function is g—continuous function.

Theorem 2.19. [4] A function f: (X,7) — (Y,p) is a w—continuous function if and only if f!(U) is a @—open set in X for
every open set Uin Y.

Theorem 2.20. [4] Every continuous function is w—continuous function.
Theorem 2.21. [2] Every w—continuous function is gw—continuous function.
Theorem 2.22. [2] Every g—continuous function is gow—continuous function.

3 Generalized fw—open sets

For a topological space (X,7) and 4 € X, the fw—closure set of 4 is defined as the intersec tion of all fow—closed subsets
of X containing 4 and is denoted by Cls.(A4). The fw—interior set of 4 is defined as the union of all fw—open subsets of
X contained in A4 and is denoted by /n#3.(A4). From Theorem (2.14), Clg,(A) is a fow—closed subsets of X and Intg.(A) is
Sw—open subsets of X.

Definition 3.1. A subset 4 of a topological space (X,7) is called generalized fw—closed (simply Gp,—closed) set, if Clz.(A)
C U whenever 4 € U and U is open subset of (X;7). The complement of Gs.,—closed set is called generalized fow—open
(simply Gpn—open) set.

For a topological space (X,7), the set of all Gs,—closed sets in X denoted by G,C(X;7) and the set of all Gg,—open sets in
X denoted by Gz, O(X,7).

Example 3.2. For any topological space (X,7), if X is a countable then it’s clear that every subset of X is i a both
Gpo—closed and Gp,—open set. That is,

GpoOX,7) = Gpo C(X,7) = P(X),
where P(X) is the power of X.

Example 3.3. Let (R,7,) be the real usual topological space on the set of real numbers R.
The rational set Q is a Gg,—closed set, since the irrational set /R is a fw—open set, that is, Clg.(Q) = Q.

Theorem 3.4. Any a countable subset of a topological space (X,7) is a Gs,—closed set in X.
Proof. Let A be a countable subset of a topological space (X;7). Then 4 is a fww—closed set, that is, Clg,(A4) = 4. That is, 4
is a Gpo—closed set. [

Theorem 3.5. Every fw—open set is Gg,—open set.
Proof. Let A be fow—open subset of a topological space (X,7). Then X — 4 is faw—closed set. Hence X — A4 = Clg,(X — 4) S
U whenever X — 4 € U and U is open set. That is, 4 is Gg.,—open set. [

Corollary 3.6. Every fw—closed set is Gg,—closed set.
The converse of the last theorem need not be true.

Example 3.7. In topological space (R,7), R is the set of real numbers and 7= {@,R,R — {2,3}}, the set R — {2} is G,—closed
set but it is not Sfw—closed set.

Theorem 3.8. Let (X;7) be a topological space. If (X,7) is a T1,—space then every Gg,—closed set in X is fow—closed set in
X

Proof. Let A be a Gp,—closed set in X. Suppose that 4 is not fw—closed set. Then there is at least x € Cls.,(4) such that x
/€ A. Since (X,7) is a T1,—space then by Theorem (2.6), {x} is an open or closed set in X. If {x} is a closed set in X then
X —{x} is an open. Since x /€ 4 then 4 € X — {x}. Since 4 is a Gp,—closed set and X — {x} is an open subset of X containing
A, then Clp(4) € X — {x}. Hence x € X — Clp(A) and this a contradiction, since x € Cls.,(4). If {x} is an open set then it
is fw—open set. Since x € Clg,(A) then we have {x} N 4 6= @. That is, x € 4 and this a contradiction. Hence 4 is a
Pw—closed set in X. O

Theorem 3.9. Every gw—closed set is Gs,,—closed set.
Proof. 1t is clear, since Clp,(A4) S Cl,(A). L

The converse of above theorem no need be true.

Example 3.10. In topological space (R,7), R is the set of real numbers and 7 = {@,R,IRU {2}}, where IR is a set of
irrational numbers, the set of rational numbers Q is fw—open set. That is, IR is fw—closed set and thus Cls,(IR) = IR.
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Hence IR is a Gg,—closed set. Since Q is not a w—open set, then /R is not a w—closed set, that is, Cl,(IR) 6= IR. Note that
IRC IRV {2} and IR U {2} but CI,(IR) * IR U {2}, note that for example, 3 € CI,(IR) and 3 €/IR U {2}. That is, the
set IR is not gw—closed set.

Definition 3.11. A topological space (X,7) is called anti-locally countable space if each nonempty open set in X is
uncountable set.

Lemma 3.12. [7] Let (X,7) be anti-locally countable space. Then
1. Int(4) = Int,(A) for every w—closed set 4 in X.
2. Cl(A) = Cl,(A) for every w—open set 4 in X.

Lemma 3.13. For a topological space (X,7) and 4 € X, the following hold:
1. Intg(X — A4) = X — Clgo(A).
2. Clgoy(X— A) = X — Intp(A).
Proof. 1. Since 4 € Clg,(A), then X — Clg,(4) € X — A. Since Clg,(A) is a fw—closed set then X — Clp(A4) is a fo—open
set. Then
X — Clge(A) = Intpo[ X — Clgo(A)] S Intpe(X — A).
For the other side, let x € Intp.(X — A). Then there is foww—open set U such that x € U € X — 4. Then X — U'is a faw—closed
set containing 4 and x /€ X — U. Hence x /€ Cls.(A4), that is, x € X — Clg,(A).
2. Similar for the part(1). []

Definition 3.14. A subset 4 of a topological space (X;7) is called S,—open set if 4 € Int,(Cl,(4)). The complement of
Se—open set is called S,—closed set. The set of all
So—closed sets in X denoted by S, C(X,7) and the set of all S,—open sets in X denoted by S,O(X;7).

Theorem 3.15. Let (X,7) be anti-locally countable space and fwO(X;7) = S,O(X;7). Then
1. Cl(A) = Cl,(A) = Clg,(A) for every w—open set A in X.
2. In(A) = Int,(A) = Ints.(A) for every w—closed set 4 in X.
Proof. (1) Let A be a w—open set in X. It is clear from Lemma (3.12) that Ci(4) = CI.(A4) and it is clear that that Cls.(4)
C Cl,(A4). Now we need to prove that Cl,(4) € Clg,(A). Let x /€ Clg,(A). Then there is a fow—open set O in X such that O
N A = Q. Since fwOX,7) = S,O(X,7), then O C Int,(Cl.(O). Hence Int.(Cl.(O) is a w—open set
containing x and
Int,(Cl,(0)) N A= Int,(Cl,(0)) N Int.,(4)

Int,[Cl,(0) N A] € Cl(0) N 4
Cl(O N A) = Cl(®) = @.

N

That is, x /€ Cl.(A4). Hence Clpo(A4) € Cl,(A).

(2) Let 4 be a w—closed set in X. Then by the part(1), Lemma (3.13) and Theorem (2.2), we get that
X — Intg.(A) = Clp(X—A)=Cl(X—A4) = X — Int,(A).

That is, Int,(4) = Intse(4). By Lemma (3.12), we get that Int(4) = Into(4) = Intpe(4). ]

Theorem 3.16. Let (X,7) be anti-locally countable space and fwO(X,7) = S,O(X,7). Then X is T1— space if and only if
every Ggo—closed set is a fov—closed set in X.

Proof. Necessity: By Theorem (2.7), X is a T1»,— space. Then, by Theorem (3.8), every Gp.—closed set is a faw—closed set
in X.

Sufficiency: Let x € X be an arbitrary point in X. By using Theorem (2.7), to prove that X'is a 71— space, we will prove
that {x} is a closed set in X. Suppose that {x} is not closed set in X. Then 4 = X — {x} is not open set. Then X is the only
open set containing 4 and hence Clp.(4) € X, that is, 4 is a Gp,—closed set in X. Then, by assumption, 4 is a fw—closed
set. That is, Clz.(A4) = 4. Since X — {x} is a w—open set, then by Theorem
(3.15)

CIl(A) = Cl,(A) = Clg(A4) = A.
That is, {x} is an open set and this contradicts the fact (X,7) be anti-locally countable space. Then X is Ti—space. O]
We have the following relation for Gg,—closed set with the other known sets.
closed set ——— w—closed set ———— = [Bw—closed set

l |

g—closed set ———— = gw—closed set G g —closed set

Figure 1:

Theorem 3.17. If 4 is a Gg,—closed set in a topological space (X,z) and B is a closed set in X then 4 N B is a Gg,—closed
set.

Proof. Let U be an open subset of X such that ANB € U. Since B is a closed set in X then U U (X — B) is an open set in
X. Since 4 is a Gg,—closed setin Xand 4 € U U (X — B) then Clz,(4) € U U (X — B). Hence
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Cl(ANB) < Clyo(A) N Clyo(B) € Clpo(A4) N CI(B)
= Chh(A)NBS[UVUX-B)]NB
S UNBgcU
Thus, 4 N B is a Gp,—closed set. L

Theorem 3.18. A subset 4 of a topological space (X7) is a Ggo,—open if and only if F € Intz.(A) whenever F € 4 and F
is closed subset of (X,7).

Proof. Let A be a Gg,—open subset of X and F be a closed subset of X such that F € 4.

Then X — A4 is a Gg,—closed set in X, X — 4 € X — F and X — F is an open subset of X. Hence Lemma (3.13), X — Intp.(A4)
= Clpo(X — A) € X — F, that is, F' C Intz.(A).

Conversely, suppose that ' € Ints.(A4) where F is a closed subset of X such that /' € 4. Then for any open subset U of X
such that X — 4 € U, we have X — U € 4 and X=U C Ints,(4). Then by Lemma(3.13), X—Intp.(4) = Clgo(X—A4) € U.
Hence X—4 is a Gg—closed (i.e., 4 is a Gg,—open set). []

Theorem 3.19. If 4 is a Gs,—closed subset of a topological space (X,7) then Clp.(4)—A contains no nonempty closed set.
Proof. Suppose that Clg,(4) — A contains nonempty closed set 7. Then
F S Clg(A) — A S Clgo(A).
Since 4 € Cl(A) then F € X— A4 and so 4 € X — F. Since 4 is a Gg,—closed set and
X — F is an open subset of X, then Clg,(4) € X — F and so F € X — Clg,(A). Therefore
F S Clpo(A) N (X — Clp(A)) =0
and so F = @. Hence Cls.(A4) — A contains no nonempty closed set. O

Corollary 3.20. If 4 is a Gg,—closed subset of a topological space (X,7) then Clg,(4)—A is a Gg,—open set.
Proof. By Theorem (3.19), Cls,(A)—A contains no nonempty closed set and it is clear that @ S Intg,(Cls.(4) — A) then by
Theorem (3.18), Clp(A) — A4 is a Ggo—open set. []

Theorem 3.21. If 4 is a Gg,—closed subset of a topological space (X;7) and B € X. If 4 € B S Clp,(A4) then B is a
Gpo—closed set.
Proof. Let U be an open set in X such that B € U. Then 4 € B € U. Since 4 is a Gg,—closed set then Clg,(4) € U. Since
B € Cl(A) then

Clpo(B) € Clpo[Clpo(A)] = Clgu(A4) € U.
That is, B is a Gg,—closed set.[]

Theorem 3.22. Let 4 be a Gp,—closed subset of a topological space (X;7). Then A = Clg,(Ints(A)) if and only if
Clpo(Intp.(A)) — A is a closed set.
Proof. Let Clg,(Intp,(4))—A be a closed set. Since Intz(A) € A and A S Clg,(A), then Clg,(Intsn(A4)) € Clgo(A). Then
Clpo(Intpo(A)) — A € Clpo(A) — A, this implies
Clpo(Intpe(A)) —A S X— A4 = A S X — (Clpo(Intpu(A4)) — A).
Since A4 is a Ggo—closed set and X —(Cls.(Ints.(A))—A) is an open set containing A, then Clg,(4) € X — (Clgo(Intpn(A4)) —
A), this implies
Clpo(Intpe(A)) — A S X — Clgu(A).

Therefore
Clgo(Intpo(A)) — A € Clpo(A) N (X — Clpo(A4)) = ©.
Hence Clg(Intp.(A)) — A = @, that is, Clgo(Ints.(A4)) = A.

Conversely, if 4 = Clg,(Ints.(4)) then Clg(Ints.(A))—A4 = @ and hence Clg,(Ints.(A))— A is a closed set.[]

Theorem 3.23. Let Y be an open subset of a topological space (X,7). If 4 is a fw—open set in (X,7) then 4 N Yis a fow—open
;frtolor}f(ls/,iﬂélA be a fw—open set in (X,7), then 4 € Cl(Int,(CI(A))). Since Y is an open set, then by Theorem (2.1),
ANY = ANY)NYCS[(ClInt,(ClA)NY]INY
C  Cllnt,(Ci(A) N YN Y=Cly[Into(Cl(A) N Y]
= Clly[Int,(Cl(A)) N Int(Y)] = Clly[Into(CI(A) N V)]
= Clly[Int,(ClA)N YN Y)] S Clly[Into(CAN Y) N Y)]

= Clly[Int(Clly(4A N Y))] € Clly[Into|y(Clly(4 N Y))].
Therefore 4 N Yis a fow—open set in (¥,1]y). ]

Theorem 3.24. Let Y be an open subset of a topological space (X;7). If 4 is a fow—open set in (Y,7]y) then 4 is a fow—open
set in (X7).
Proof- Since 4 is a fow—open set in (¥,7]y) and since Y is an open set, then
A S Clly(Int.|y(Clly(4))) = Cll(Int.|y (Clly(4))) N Y
S Cl(nty|ly (Clly(A)) N Y ) = Cl|(Int(Clly (A)) N Y)
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= Cl(Int.(Clly(4) N Y)) = Cll(Int(Clly (4)))
= Cll(Int.(CAA) N Y)) € Cl|(Into(CIA N Y)))

= Cl(Intu(CI(A4))).
Therefore A4 is a fw—open set in X. L]

Theorem 3.25. Let Y be an open subset of a topological space (X,7) and 4 be a subset of Y. Then Clg,|y(4) = Clgn(4) N
Y.

Proof. Let x € Clg,|y(4) and G be a fw—open set in X containing x. By Theorem (3.23), G N Y is a fow—open set in ¥
containing x and since x € Clgo|y(4), then GNA=(GN Y )N A 6=@. Then x € Clg,(A) and since x € Y, this implies x
€ Clg(A) N Y. That is, Clg|y(A) € Clg(A) N Y. On the other side, let x € Clg,(4) N Y and O be a fw—open set in Y
containing x. By Theorem (3.24), O = G N Y for some fw—open set G in X. Since x € Clg,(A), then G N A 6= @ and so
(GNY)NA6=0,since x € Y.Hence O N 4 6=, that is, x € Clg,|y(4). Hence Clp,(A) N Y S Clgo|y(4). U

Theorem 3.26. Let Y be an open subspace of a topological space (X,7) and 4 € Y. If 4 is a Gg,—closed subset in X then
A is a Gpo—closed setin Y.
Proof. Let O be an open subset in Y such that 4 € O. Then O = U NY for some open set U in X and so 4 € U. Since 4 is
a Gpo—closed subset of X, then Cls.,(4) S U. By Theorem
(3.25),

Cleoly(A)=Clp(A) N YS UN Y=0.
Hence 4 is a Gg,—closed setin Y. O

Theorem 3.27. Let Y be an open subspace of a topological space (X,7) and 4 € Y. If 4 is a Gg,—closed subset in Y and ¥
is fw—closed in X then 4 is a Gg,—closed set in X.

Proof. Let U be an open subset in X such that 4 € U. Then4 € UN Yand U N Yis open setin Y. Since A4 is a Gg,—closed
subset in Y, then Clg,|y(4) € U NY . Since Y is an open set in X and it is fw—closed in X then By Theorem (3.25),
Clpo(A) = Clp(A N Y') € Clpo(A) N Clpo(Y ) = Clgs(A) N Y= Clpu|ly(4) S UN Y E U.

Hence 4 is a Gg,—closed set in X. OJ

4 pfw—Continuous functions
Definition 4.1. A function f: (X,7) — (Y,p) of a topological space (X,7) into a space (Y,p) is called foo—continuous if f '(U)
is a fw—open set in X for every open set Uin Y.

Theorem 4.2. A function f: (X;7) — (¥,p) of a topological space (X,7) into a space (Y,p) is fww—continuous if and only if
fU(F) is a fw—closed set in X for every closed set Fin Y.

Proof. Let f: (X,7) — (Y,p) be a foo—continuous and F be any closed set in Y. Then f'(Y — F) = X — f1(F) is a fo—open
set in X, that is, f"!(F) is fw—closed set in X. Conversely, suppose that f'(F) is a fowo—closed set in X for every closed set
Fin Y. Let Ube any open set in Y. Then by the hypothesis, (Y — U) =X —f }(U) is a fow—closed set in X, that is, £ 1(U)
is a fw—open set in X. Hence fis a fow—continuous. []

Theorem 4.3. Every w—continuous function is fow—continuous function.

Proof. Letf: (X,7) — (Y,p) be a w—continuous function and U be any open set in Y. Then (V) is a w—open set in X and
hence f'(U) is a fw—open set in X. That is, fis a fo—continuous function.

The converse of the last theorem need not be true.

Example 4.4. Let : (R,7) — (R,p) be a function defined by f{(r) = r, where

7={@,R} and p = {@,R, {2} }.
The function f'is a fw—continuous, since £1({2}) = {2} and f''(R) = R are fw—open sets in (R,7). The function f'is not
w—continuous, since f({2}) = {2} is not w—open set in (R,7).

Theorem 4.5. If /: (X;7) — (Y,p) is a fw—continuous function then for each x € X and each open set U in Y with f{x) €
U, there exists a foo—open set Vin Xsuch thatx € V' and (V') € U.

Proof. Letx € X and U be any open set in Y containing f{x). Put V= f"!(U). Since fis a fo—continuous then V is a fo—open
setin X such thatx € Vand (V') € U.

conversely, Let U be any open setin Y. Let x € f'(U). Then f{x) € U and hence by the hypothesis, there exists a foo—open
set ¥ in X such that x € ¥V and (V) € U. Hence x € V < f(U), that is, f'(U) is a fw—open set in X. That is, f'is a
Bo—continuous. []

Theorem 4.6. Let /: (X,7) — (¥,p) be a function of a space (X;7) into a space (Y,p). Then f'is a foo—continuous if and only
if flClg(A)] € CI(f(A)) forall 4 € X.

Proof. Let fbe a fwv—continuous and 4 be any subset of X. Then CI(f{4)) is a closed set in Y. Since f'is a fw—continuous
then by Theorem (4.2), £ '[CI(f(4))] is a fw—closed set in X. That is,

Clao [fHCUf(A))]] = FHCU(f(A))]
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Since f{4) € CI(f(4)) then A < f'[CI(f(4))]. This implies,
Clpu(A) C Clg [fHCUF(A)]] = FHOUF(A)]
Hence f[Cls,(A)] € CIf(A)).
Conversely, let H be any closed set in Y, that is, CI(H) = H. Since f'(H) € X. Then by the hypothesis,
FClaulf~ (H))] € CUF (/7 (H))] € CUH) = H.
This implies, Clgo[f'(H)] € f'(H). Hence Clg,[f\(H)] = f'(H), that is, f'(H) is a fo—closed set in X. Therefore f'is a
Pow—continuous. []

Theorem 4.7. Let f: (X,;7) — (¥,p) be a function of a space (X7) into a space (Y,p). Then fis fco—continuous if and only
if Clgo(f'(B)) € f(CI(B)) forall BS Y .
Proof. Let fbe a foo—continuous and B be any subset of Y. Then CI(B) is a closed set in Y. Since fis a w—continuous then
by Theorem(4.2), '[CI(B)] is a fw—closed set in X. That is,
Since B € CI(B) then f'(B) € f'[CI(B)]. This implies,
Cla,(f~'(B)) € Cls [FHCUB)]] = fCUB))|
Hence Clg.(f'1(B)) < f[CU(B)].
Conversely, Let H be any closed set in Y, that is, C/(H) = H. Since H € Y . Then by the hypothesis,
Clpo(f'(H)) < ' (CI(H)) = f ' (H).
This implies, Clg[f'(H)] € f(H). Hence Clg,[f'(H)] = f'(H), that is, f(H) is a fw—closed set in X. Hence f'is a
Bo—continuous. [

Theorem 4.8. Let /: (X;7) — (Y,p) be a function of a space (X,7) into a space (Y,p). Then f'is fw—continuous if and if
F1UInt(B)) € Intyo[f(B)] forall BE Y .
Proof. Let f be a fw—continuous and B be any subset of Y . Then In#(B) is an open set in Y . Since fis a w—continuous
then f![In#(B)] is a Bw—open set in X. That is,

Intg, [f71 [Int(B)]] = f [Int(B)]
Since Int(B) € B then f![In#(B)] € f'(B). This implies,
fHInt(B)] = Intg, [f~'[Int(B)]] C Inta,(f~'(B))
Hence f"\(Int(B)) € Intgo[f ' (B)].
Conversely, let U be any open set in Y, that is, In#(U) = U. Since U € Y . Then by the hypothesis, f(U) = f'(Int((U)) S
Intgo[f(U)].

This implies, f(U) S Intp[f'(U)]. Hence f1(U) = Intg[f ' (U)], that is, f'(U) is a fo—open set in X. Hence f is
Pow—continuous. []

Definition 4.9. A function f : (X;7) — (¥,p) of a topological space (X,7) into a space (Y,p) is called generalized
Bw—continuous (simply Gp,—continuous) function, if f'(U) is a Gg,—open set in X for every open set Uin Y .

Theorem 4.10. A function f: (X;7) — (¥,p) of a topological space (X,7) into a space (¥,p) is Gp,—continuous if and only
if f1(F) is a Gpo—closed set in X for every closed set Fin Y .

Proof. Letf: (X,t) — (Y,p) be a Ggo—continuous and F be any closed setin Y. Then f (Y —F) = X —1(F) is a Ggo—open
setin X, that is, f '(F) is Ggw—closed set in X. Conversely, suppose that f!(F) is a G,—closed set in X for every closed set
Fin Y. Let U be any open set in Y . Then by the hypothesis, (Y —U) = X = }(U) is is a Gg—closed set in X, that is,
S(U) is a Gg,—open set in X. Hence fis a Gg,—continuous. []

Theorem 4.11. Every fw—continuous function is Gg,—continuous function.

Proof. Let f: (X,7) — (Y,p) be a foo—continuous function and U be any open set in Y . Then £ (V) is a fw—open set in X
and by Theorem (3.5), f'(U) is a Gg,—open set in X. That is, fis a G,—continuous function. []

The converse of the last theorem need not be true.

Example 4.12. Let f: (R,7) — (R,p) be a function defined by f(r) = r, where

t={@,RR— {2,3}} andp = {®,R {2} }.
The function fis a Gg,—continuous, since £'({2}) = {2} and f/(R) = R are Gg,—open sets in (R,7). The function f'is not
Bw—continuous, since £'({2}) = {2} is not fw—open set in (R,7).

Theorem 4.13. Let f: (X;7) — (Y,p) be a function of a Ti»,—space (X,7) into a space (Y,p). If fis a Gg,—continuous then it
is a fww—continuous.

Proof. Let f: (X,;7) — (Y,p) be a Gp,—continuous function and U be any open set in Y. Then f!(U) is a Gs,—open set in
X. Since X is a Ti,—space then by Theorem (3.8), f'(U) is a fw—open set in X. That is, fis a foo—continuous function. [

Theorem 4.14. Every gw—continuous function is Gg,—continuous function.
Proof. Let f: (X;t) — (Y,p) be a gw—continuous function and U be any open setin Y.
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Then f(U) is a gw—open set in X and by Theorem (3.9), f (V) is a Gg,—open set in X. That is, fis a Gg,—continuous
function.[]
The converse of the last theorem need not be true.

Example 4.15. Let f: (R,7) — (R,p) be a function defined by
N 2, z€IR
Ha) = r, v¢ IR
where
={@,RIRU {2}} and p = {Q,R, {2}},
IR is a set of irrational numbers. The function fis a Gg,—continuous, since f'({2}) = IR and f'(R) = R are Gp,—open sets
in (R,7). The function fis not gw—continuous, since £ '({2}) = IR is not gw—open set in (R,7).

We have the following relation for Gg,—continuous function with the other known functions.
continuous w—continuous [Buw—continuous

l l |

g—continuous ——— gw—continuous —— = (g, —continuous

Figure 2:

Theorem 4.16. If /: (X,7) — (Y,p) is a Gg,—continuous function then for each x € X and each open set U in Y with f{x) €
U, there exists a Gg,—open set V' in X such thatx € Vand V') € U.

Proof. Let x € X and U be any open set in Y containing f{x). Put ¥ = f(U). Since fis a Gg,—continuous then V is a
Ggo—open set in X such that x € Vand (V') € U. O

The converse of the last theorem need not be true.

Example 4.17. Let f: (R,7) — (R,p) be a function defined by

L 2, xe€{23}
flz) = { r, x¢{2,3}

t={0,RR—{2,3}} andp = {@,R, {2} }.
The function fis not Gg,—continuous, since £ 1({2}) = {2,3} is not Ggo—open set in (R,7). On the other hand, for all x € R,
{x} is a Gg,—open set in (R, 7).

where
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