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1 INTRODUCTION
In 1970 Levine, [7], introduced the notion of a generalized closed set. A subset 4 of a space X is called a generalized
closed set (simply g—closed set) if C/ (4) € U whenever 4 € U and U is open set. The complement of a generalized closed
set (simply g—open set) is called a generalized open set. In 1982 Hdeib [5] introduced the notion of a w—open sets. A
subset 4 of a space X is called w—open set if for each x € A4, there is an open set U, containing x such that U,—4 is a
countable set. The complement of a w—open set is called a w—closed set. In 1983 the authors [1] introduced the weak
form for an open set which is called a f—open set. A subset 4 of a space X is called a f—open set if A € Cl(Int(CI(A))).
The complement of a f—open set is called a f—closed set. In 2005 Al-Zoubi [2] introduced the generalization prop erty of
w—open sets. A subset 4 of a space X is called generalized w—closed set if Cl,(4) € U whenever 4 € U and U is open
set. The complement of generalized w—closed set is called generalized w—open set, where Cl,(A) is the w—closure set of
A. In 2009 Noiri and Noorani [8] introduced the notion of fw—open set as weak form for a w—open sets and a f—open
sets. A subset 4 of a space X is called a fow—open set if 4 S Cl(Int.(CI(A))). The complement of a fow—open set is called
a fw—closed set, where Int,(A) is the w—interior set of 4. In 2019 [9] we introduced the notion of Gg,—closed set as weak
form for a fw—closed sets and a f—open sets. A subset 4 of a topological space (X;7) is called generalized fow—closed
(simply Ggpo—closed) set if Clg,(A) € U whenever 4 € U and U is open subset of (X,7). The complement of Gg,—closed
set is called generalized faw—open (simply Gg—open) set, where Clg,, (A4) is the fov—closure set of 4 which defined as the
intersection of all fw—closed subsets of X containing 4. Similar, the fw—interior set of A is defined as the union of all
Pw—open subsets of X contained in 4 and is denoted by In#z.(A).
This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the new classes
for separation axioms in topological spaces, called fw—separation axioms. Furthermore, the relationship with the other
known axioms will be studied. In
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Section 4 we introduce also the new classes for separation axioms in topological spaces, called Gs,—separation axioms.
Furthermore, the relationship with the other known axioms will be also studied. In Section 5 we introduce the stronger
form of connected spaces.

2 Preliminaries

For a topological space (X,7) and 4 € X, throughout this paper, we mean C/(4) and In#(4) the closure set and the interior
set of 4, respectively.

A subset of topological space is called a clopen set if it is both open and closed set. A topological space (X,7) is called 0-
dimensional space , [6] if it has a base consisting clopen sets.

Definition 2.1. [6] A topological space (X 7) is called a disconnected space if it is the union of two nonempty subsets A4
and B such that Cl(4) N B=@ and A N CI(B) = Q.

Theorem 2.2. [6] A topological space (X,7) is a disconnected space if and only if it is the union of two disjoint nonempty
open subsets.

Theorem 2.3. [6] For a topological space (X,7) and 4,8 € X, if B is an open set in X then Cl(4)capB € CI(A N B).
Theorem 2.4. [7] Every closed set is a g—closed set.

Definition 2.5. [7] A topological space (X;7) is called a T1»—space if every g—closed set is closed set.

Theorem 2.6. [4] A topological space (X;7) is T1,—space if and only if every singleton set is open or closed set.

Definition 2.7. [6] A topological space (X,7) is called:

1. To—space if for two points x 6=y € X in X, there is open set Gin X suchthatx € G  andy €/G.

2. Ti—space if for two points x 6=y € X in X, there are two open sets G and U in X such thatx € G,y €/ G,y € Uand x
e/ U.

3. Tr—space or Hausdorff spaceif for two points x 6=y € X in X, there are two open setsG and U in X such thatx € G, y
EUand UNG=0.

4. regular space if for each closet set /' in X and each x €/ F, there are two open sets G and U in X such that F € G, x
€/Uand U N G = Q. A topological space (X,7) is called T3—space if it is regular space and Ti—space.

5. Normal space if for each two disjoint closet sets F'and M in X, there are two open sets G and U in X such that F € G,
Mc Uand UN G=@. A topological space (X;7) is called Ty—space if it is normal space and 7 —space.

Theorem 2.8. [6] A topological space (X;7) is Ti—space if and only if every singleton set is closed set.

Theorem 2.9. [6] A topological space (X,7) is regular space if and only if for each x € X and for each open set N in X
containing x, there is an open set M in X containing x such that C/(M) € N.

Theorem 2.10. [5] Every open set is w—open set.
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Theorem 2.11. [5] For a topological space (X,7), the collection of all w—open sets with a set X forms a topological space.

Theorem 2.12. [8] The union of arbitrary of fw—open sets is fov—open set.
Theorem 2.13. [8] Every w—open set is foo—open set.

Definition 2.14. [6] A function f: (X,7) — (Y,p) of a space (X,7) into a space (Y,p) is called continuous function if f '(U)
is an open set in X for every openset Uin Y.

Definition 2.15. A function f: (X,7) — (¥,p) of a space (X,7) into a space (Y,p) is called:
1. open function [6] if {U) is open set in Y for every open set U in X.

2. closed function [6] if f{U) is closed set in Y for every closed set U in X.

3. Bw—continuous function [9] if £(U) is a fww—open set in X for every open set Uin Y .

Theorem 2.16. [9] Every fw—open set is Gg,—open set.

Theorem 2.17. [9] Let (X;7) be a topological space. If (X,7) is a T1,—space then every Gg,—closed set in X is fw—closed
set in X.

3 pw—Separation axioms

Definition 3.1. A topological space (X 7) is called:

1. B.’—space if for two points x 6= y € X in X, there are two fw—open sets G and U in X such thatx € G,y € Uand U N
G=0.

2. Pw—regular space if for each closet set ' in X and each x /€ F, there are two fw—open sets G and U in X such that F
C G,x€ Uand UNG = @. A topological space (X,7) is called B.,°—space if it is fw—regular space and Ti—space.

3. Pw—normal space if for each two disjoint closet sets ' and M in X, there are two fw—open sets G and U in X such that
FSG,McUand UN G=0. A topological space (X,7) is called B.*—space if it is fo—normal space and Ti—space.

The proof of the following theorem, Theorem (3.3) and Theorem (3.4) follow from the fact that open sets are fw—open
sets.

. A2
Theorem 3.2. Every T>—space is a2, —space.
Theorem 3.3. Every regular space is a fo—regular space.

Theorem 3.4. Every normal space is a fw—normal space.
The converse of the Theorems (3.2), (3.3) and (3.4) need not be true.

Example 3.5. Let X = {1,2,3}. The indiscrete topological space (X, T}), where T;= {@,X}, is f,>—space, fo—regular space
and fw—normal space, since all subsets of countable topological space are fw—open sets, but it is not 7>—space, regular
space or normal space.

Theorem 3.6. Every f,,>—space is a f8,°—space.
Proof. Let (X,7) be a B,°—space and x 6=y € X be any points in X. Since X is a T)—space then by Theorem (2.8), {x} is a
closed set in X and y /€{x}. Since X is a fo—regular space then there are two fw—open sets G and U in X such that x
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€{x}S G,y € Uand UNG = @. Hence X is a/’ ~space. O]

Theorem 3.7. Every f,*—space is a f,°—space.
Proof. Let (X,7) be a S,*—space. Let F be any closed set in X and x /€ F be any points in X. Since X is a T;—space then by
Theorem (2.8), {x} is a closed set in X and F N{x} = @. Since X is a fo—normal space then there are two ffw—open sets

. . A3
G and Uin X such that x €{x}S G, F € Uand U N G = @. Hence X is ale —space. []
We have the following relation.
1y—space ——— = T3 —space —— = 1), —space

N | |

3, —space ———— ,-’.'3;‘) —space ———> .,.-:"J’f', —space

Figure 1:
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Theorem 3.8. A topological space (X,7) is a f,>—space if and only if for each x € X and for y 6= x € X, there is a fo—open
set M in X containing x such that y /€ Cl,(M).

Proof. Suppose that (X ,T) is 33 “space. Let x € X be any point in X and y 6= x be any point in X. Then there are two
Pw—open sets G and U in X such thatx € G,y € Uand UN G = @. Take M = G is a fow—open set in X containing x and
soy /€ M € Clp,(M).

Conversely, Let x 6=y € X be any points in X. and By the hypothesis, there is a fw—open set M in X containing x
such that y /€ Cls,(M). Then X — Cls,(M) is a fo—open set M in X containing y and M N [X — Clg,(M)] = @. Then (
X,7)is r“ﬁ_space.

Theorem 3.9. A topological space (X,7) is a fw—regular space if and only if for each x € X and for each open set N in X
containing x, there is a fcw—open set M in X containing x such that Clz.(M) S N.
Proof. Suppose that (X,7) is foo—regular space. Let x € X be any point in X and N be any open set in X containing x. Then
X — Nisaclosed set in X and x /€ X — N. Since (X,7) is fow—regular space then there are two fw—open sets G and U in X
suchthat X\— NS G,x € Uand U N G = @. Take M = U is a fw—open set in X containing x. Then M = U € X — G, this
implies,

Clps(M) € Clgo( X—G)=X—-G S N.

Conversely, Let F be any closed set in X and x /€ F. Then x € X — F and X — F is an open set in X containing x. By
the hypothesis, there is a foo—open set M in X containing x such that Clg,(M) € X — F. Then F € X — Clg,(M) and X —
Clp(M) is a fw—open set in X. Since M is a fwo—open set in X containing x and M N [X — Clg,(M)] = @, then (X7) is
Bo—regular space. O

Theorem 3.10. A topological space (X,7) is fow—normal space if and only if for each closed set F in X and for each open
set G in X containing F, there is a fw—open set } in X containing F such that Clg.(}V) € G.
Proof. Suppose that (X;7) is fo—normal space. Let F be any closed set in X and G be any open set in X containing F. Then
X - Gisaclosed setin Xand F N (X — G) = @. Since (X,7) is foo—normal space then there are two fo—open sets H and U
in Xsuch that X—G € U, F € Hand U NH = @. Take V= H is a fw—open set in X containing F. Then V'=H S X — U,
this implies,
Cloo(V)E Clpo(X—U)=X-UCG.

Conversely, Let F'and M be any two closed sets in X such that F N M = @. Then M € X—F and X—F is an open set in
X containing closed set M. By the hypothesis, there is a fowo—open set V in X containing M such that Clg., (V') € X —F. Then
F S X—Clp(V') and X — Clg(V') is a foo—open set in X. Since V' is a foo—open set in X containing x and V' N [X — Clpo(V
)] = @, then (X,7) is fw—normal space. []

Theorem 3.11. If a function f: (X,7) — (Y,p) is fw—continuous injection and Y is a T>—space then X is a B, ’>—space.
Proof. Let Y be a To—space and x 6=y € X be any points in X. Since fis injection then f{x) 6=f(y) € Y. Then there are two
open sets G and U in Y such that f{x) € G, {y) € Uand UN G = @. Then x € f (G), y € f'(U) and
lonflO=rGn)=1r@)=0.
Since G and U are open sets in Y and f'is a foo—continuous then £'(U) and f(G) are feo—open sets in X. Hence X is a
Bo>—space. []
A subset of topological space is called a fw—clopen set if it is both fw—open and fw—closed set. sets.

Definition 3.12. A function f: (X,7) — (¥,p) of a topological space (X,7) into a space (¥,p) is called slightly foo—continuous
Sfunction if f'(U) is a fw—clopen set in X for every clopen set Uin Y .

Theorem 3.13. Let f: (X;7) — (¥,p) be a slightly fow—continuous injection function and Y be 0-dimensional. If Y is a
T»—space then X is a f,>—space.
Proof- Let Y be a T>—space and x 6=y € X be any points in X. Since fis injection then f{x) 6= f{y) € Y . Then there are two
open sets G and U in Y such that fix) € G, f{y) € Uand U N G = @. Since Y is 0-dimensional space there are two clopen
sets Giand U, in Y such that

) EGiceG and fiy)c U, c U
Thenx € f1(G1) € f(G) and y S () € Y(U).
and (G N 'O s@NFO)=FGCNU)=11(B)=0.
Since Gy and U are clopen sets in Y and fis a slightly fo—continuous then /* (U) and f(G) are fw—open sets in X. Hence
Xisals ~space. L]

Theorem 3.14. Let /: (X;7) — (Y,p) be fw—continuous injection function. If f'is an open (or closed) function and Y'is a
regular space then X is a fw—regular space.

Proof- 1. Firstly suppose fis an open function. Let x € X be any point in X and U be any open set containing x. Then f{x)
€ flU) and f{U) is an open set in Y. Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing
f(x) such that CI(M) < f{U). Since fis a fw—continuous then ¥ = f'|(M) is a fw—open set in X containing x. Since f is
injection then

FICIn] < fAU)] € U
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Then
Clpo(V') = Clpo[f ' (MD] < ' [CUM)] € fAV)] € U.
Hence by Theorem (3.9), X is a foo—regular space.
2. Secondly suppose f'is a closed function. Let F be any closed set in X and x /€ F. Then f{x) €/ f(F) and f{F) is a closed
set in Y. Since Y is a regular space then there are two open sets G and U in Y such that AF) € G,fix) e Uand UN G =
@. Since fis injection then F € f1(G), x /€ f'(U) and
1GNO=rGnu)=,'0)=2.

Since fis a fw—continuous then £1(G) and f!(U) are fw—open in X. Hence X is a fw—regular space.

Theorem 3.15. Let f: (X,7) — (Y,p) be slightly fow—continuous injection and Y is 0-dimensional space. If fis an open (or
closed) function then X is a fw—regular space.
Proof- 1. Firstly suppose fis an open function. Let x € X be any point in X and U be any open set containing x. Then f{x)
€ f{U) and f{U) is an open set in Y. Since Yis a 0-dimensional space then there is a clopen set V' in Y such that f{x) € V'
C (V). Since f is injection then x € £/(V) € U. Since fis a fw—continuous then /(¥ is a fw—clopen set in X containing
x. Hence
Clpo(f 'V =f'(V) €U
Hence by Theorem (3.9), X is a fow—regular space.
2. Secondly suppose f'is a closed function. Let F be any closed set in X and x €/ F. Then f{x) €/ f(F) and f(F) is a closed
setin Y. Then fix) € Y— f(F)and Y — f(F) is an open setin Y. Since Y is a 0-dimensional space then there is a clopen set
V'in Y such that f{x) € V' € Y — f(F). Since f'is injection then
xef'V)SfIY-AP]SX-F.
Since fis a slightly fow—continuous then f'(V) is a fow—clopen set in X containing x and
X—f1(V)is a fo—clopen set in X such that ¥ € X — f1(V') Hence X is a fo—regular space. Ol

Theorem 3.16. Let f: (X;7) — (¥,p) be fw—continuous injection function. If fis closed function and Y is a normal space
then X is a foo—normal space.
Proof. Suppose F and H are any two closed sets in X such that ¥ NH = @. since Since fis injection and closed function
then A{F) and f{H) are closed sets in ¥ and
AH) NAF)=fH N F)=f@)=0.

Since Y is a normal space then there are two open sets G and Uin Ysuchthat {F) € G, f(H) €S Uand UN G

= @. Since fis injection then F C f(G), H € f'(U) and
16 NI =GN U)=f'(9)=0.

Since fis a fw—continuous then £ 1(G) and f}(U) are fw—open in X. Hence X is a pw—normal space. O]

Theorem 3.17. Let f': (X,7) — (¥,p) be slightly fow—continuous injection and Y is 0 dimensional space. If f'is a closed
function and Y is a normal space then X is a fw—normal space.
Proof. Suppose F and H are any two closed sets in X such that 7/ N H = @. Since f'is injection and closed function then
AF) and f{H) are closed sets in Y and
SAH) NAF)=fH N F)=f0)=0.
Since Y is a normal space then there are two open sets G and U in Y such that {F) € G, {H) € Uand U N G = @. Since
Y is a 0-dimensional space then for every g € f{F) and u € f{H) there are clopen sets U, and G in Y such that
uelU, €U ad geG,EG
Then filH) CU{U,: u € f{H) and U,is aclopensetin ¥ }S U
and f(F) CU{G¢: g € AF) and Gyis aclopensetin ¥ }S G.
This implies,
HcU{f'(U,): u€ f{H) and U,is a clopen setin Y } € f1(U)
and
F CU{f'(G,) : g € f{iF) and G,is a clopen setin Y } < f(G).
Since fis a slightly fw—continuous then f'(U,) and f!(G,) are fow—open in X for all g € f{F) and u € f{H). So that
M=U{f'(U,) : u € fiH)} and N=U{f(Gy) : g €fIF)}
are fw—open in X and
MONS O NG UNG)=,1(2)=0.
Hence X is a fo—normal space.
]
4 Gpo—Separation axioms
Definition 4.1. A topological space (X7) is called:
1. G?po—space if for two points x 6=y € X in X, there are two Gp,—open sets G and U in X such thatx € G,y € Uand U
NG=09.
2. Ggo—regular space if for each closet set ' in X and each x /€ F, there are two Gp,—open sets G and U in X such that
F<S G,x€ Uand UNG = @. A topological space (X,7) is called G*s,—space if it is Gg,—regular space and T1—space.
3. Ggw—normal space if for each two disjoint closet sets F and M in X, there are two Gg,—open sets G and U in X such
that ¥ € G, M € U and U NG = @. A topological space (X,7) is called G*s,—space if it is Gg,—normal space and
T1—space.
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It is clear that every fB.>—space is a G?s,—space, every fw—regular space is a Gg,—regular space and every fo—normal
space is a Gg,—normal space.

Theorem 4.2. Every G4,—space is a G*s,—space.
Proof. Similar for Theorem (3.6).

Theorem 4.3. Every G*s,—space is a G*s,—space.
Proof. Similar for Theorem (3.7). L]

Theorem 4.4. Let (X,7) be a To—space. If X is a G?s,—space then X is a .,>—space.
Proof. For two points x 6=y € X in X, since X is a G?s,—space, there are two Gg,—open sets G and U in X such that x €
G,y € Uand U NG = Q. Since X is a Tip,—space, then by Theorem (2.17), G and U are fw—open sets in X. Hence X is a

32
Be —space. []

Theorem 4.5. Let (X;7) be a T1»—space. If X is a Gp,—regular space then X is a fw—regular space

Proof- For each closet set ' in X and each x /€ F, since X is a Gp,—regular space, there are two Gg,—open sets G and U in
Xsuchthat F € G,x € Uand UN G = Q. Since X is a T1x—space, then by Theorem (2.17), G and U are fw—open sets in
X. Hence X is a fw—regular space. []

.33
Corollary 4.6. Every G3s,—space is a%, ~space.
Proof. Use above theorem, since every Ti—space is T1»—space. ]

Theorem 4.7. Let (X;7) be a T1»—space. If X is a Gp,—normal space then X is a fwo—normal space

Proof- For each two disjoint closet sets /" and M in X, since X is a Gg,—normal space, there are two Gs,—open sets G and
Uin Xsuch that F € G,M S Uand UN G = @. Since X is a T1»—space then by Theorem (2.17), G and U are fw—open
sets in X. Hence X is a fwo—normal space. [

Corollary 4.8. Every G*s,—space is a B,,*—space.
Proof. Use above theorem, since every T1—space is T1,—space. O]
We have the following relation.

1 —space T5—space —— = Ty —space

l | |

- FHE . o F ) -
3, —space ———— [’ —space ——— (37 —space

| | |

Gfi ., —Space (7?5. ,—Space —— (_}% ., —Space

Figure 2:

Theorem 4.9. A topological space (X;7) is G*s,—space if and only if for each x € X and for y 6= x € X, there is a Gz,—open
set M in X containing x such that y /€ Cls.,(M).
Proof. Similar for Theorem (3.8). ]

Theorem 4.10. A topological space (X,7) is Gg—regular space if and only if for each x € X and for each open set N in X
containing x, there is a Gs,—open set M in X containing x such that Clz,(M) S N.
Proof. Similar for Theorem (3.9). ]

Theorem 4.11. A topological space (X,7) is Gg»—normal space if and only if for each closed set F in X and for each open
set G in X containing F, there is a Gg,—open set V in X containing F such that Cls.(V') € G.
Proof. Similar for Theorem (3.10). ]

Theorem 4.12. If a function f: (X,7) — (¥,p) is Gs,—continuous injection and Y is a T>—space then X is a G%s,—space.

Proof- Let Y be a T>—space and x 6=y € X be any points in X. Since fis injection then f{x) 6= f{y) € Y . Then there are two

open sets G and U in Y such that f{x) € G, {y) € Uand UN G = @. Then x € f (G), y € f'(U) and
loONIO=rGno)=1r'@)=0.

Since G and U are open sets in Y and f'is a Gg,—continuous then £ (U) and f'(G) are Gg,—open sets in X. Hence X is a

G?go—space. []

Theorem 4.13. Let f: (X;7) — (¥,p) be Gg,—continuous injection function. If fis an open (or closed) function and Y'is a
regular space then X is a Gg,—regular space.
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Proof. 1. Firstly suppose fis an open function. Let x € X be any point in X and U be any open set containing x. Then f{x)
€ flU) and f{U) is an open set in Y. Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing
f(x) such that CI(M) < f{U). Since fis a Gz,—continuous then V' = f}(M) is a Gz,—open set in X containing x. Since f'is
injection then

FICIn] < fIA)] € U

Clpo(V') = Clpo[f'MD] < £ [CUM)] € fAV)] € U.
Then by Theorem (4.10), X is a Gg,—regular space.
2. Secondly suppose f'is a closed function. Let F' be any closed set in X and x /€ F. Then f(x) €/ f(F) and f(F) is a closed
set in Y . Since Y is a regular space then there are two open sets G and U in Y such that {F) € G, fix) e Uand UN G =
@. Since fis injection then F € f1(G), x /€ f(U) and
NI O=rGn)=,r@)=0.
Since fis a G,—continuous then f'(G) and f'(U) are Gg,—open in X. Hence X is a G, —regular space.

Hence

Theorem 4.14. Let f: (X;7) — (¥,p) be Gp,—continuous injection function. If fis closed function and Y is a normal space
then X is a Gg,—normal space.
Proof. Suppose F and H are any two closed sets in X such that ¥ NH = @. since Since fis injection and closed function
then f{F) and f{H) are closed sets in ¥ and
SAH) NAF)=fH N F)=f@)=0.

Since Y is a normal space then there are two open sets G and Uin Ysuchthat {F) € G, fIH) S Uand UN G

= @. Since fis injection then F € f1(G), H < f (V) and
rl@nr=r@Gnu=r'@=0.

Since fis a Gg,—continuous then £ 1(G) and (V) are Gg,—open in X. Hence X is a Gg,—normal space. []

5 po—Connectedness property
Definition S.1. Let (X;7) be a topological space and 4,B be two nonempty subsets of X. The sets 4 and B are called a
Pow—separated sets if Clg(A) N B=@ and 4 N Clg,(B) = @.

Remark 5.2. Let (X,7) be a topological space. Then
1. Any fow—separated sets are disjoint sets, since 4 N B € 4 N Clg(B) = 0.
2. Any two nonempty fw—closed sets in X are fw—separated if they are disjoint sets.

Definition 5.3. A topological space (X;7) is called a fw—disconnected space if it is the union of two fw—separated sets.
Otherwise A (X;7) is called a fw—connected space.

Example 5.4. Any a countable topological space (X,7) is a fow—disconnected space if X has more that one point.
The proof of the following theorem is clear since Clg.(4) © CI(A).

Theorem 5.5. Every disconnected space is a fa—disconnected space.
The converse of the above theorem need not be true.

Example 5.6. In the topological space (X,7), where T = {@,X} and X = {a,b}, is pw—disconnected space but it is a
connected space.

Theorem 5.7. A topological space (X,7) is a fwo—disconnected space if and only if it is the union of two disjoint nonempty
Pw—open sets.
Proof. Suppose that (X7) is a fw—disconnected space. Then X is the union of two few—separated sets, that is, there are
two nonempty subsets 4 and B of X such that
Cli(A)NB=0, AN Clpo(B)=@Pand A U B=X.
Take G = X — Clpo(A4) and H =X — Cl(B). Then G and H are fw—open sets. Since B 6= @ and Clg,(4)NB =@, then B C
X —Clg,(A), that is, G = X —Clp,(A4) 6= @. Similar H 6= @. Since Clp,(4) N B=0, A N Clp(B) =@ and A U B = X, then

X-(GNH)=X-G)UX-H)=[Cl(4)] VU [Clh(B)] =X.
Thatis, GN H=0.

Conversely, suppose that (X,7) is the union of two disjoint nonempty fw—open subsets, say G and H. Take 4 = X
—G and B=X—H. Then 4 and B are fw—closed sets, that is, Clg,(4) = A and Clg,(B) = B.Since H6=@ and HN G =@,
then H € X — G = A4, that is, 4 6= @. Similar B 6= @. Since G N H= @ and G U H = X, then
Cho(A)NB=ANB=X-GONX-H)=X-(GUH)=X—-X=0.
Similar, 4 N Clg,(B) = @. Note that
AUB=X-G)UX-H=X-(GNH)=X-0=X

That is, (X,7) is a fwo—disconnected space. ]

Corollary 5.8. A topological space (X,7) is a foo—disconnected space if and only if it is the union of two disjoint nonempty
Pw—closed subsets.
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Proof. Suppose that (X7) is a fow—disconnected space. Then by Theorem (5.7), (X;7) is the union of two disjoint nonempty
Pw—open subsets, say G and H. Then X —G and X —H are fw—closed subsets. Since G 6= @, H 6= @ and X= G U H then
X-G6=0,X—H6=0and

X-6)NX-H=X-(GUH)=X-X=0.
Since G N H = @ then

X-GO)UX-H=X-(GNH)=X-0=X
Hence X is the union of two disjoint nonempty fw—closed subsets.

Conversely, suppose that (X,7) is the union of two disjoint nonempty few—closed subsets, say G and H. Take 4 = X —
G and B =X — H. Then A and B are fw—open sets. Since H 6= @ and H NG = @, then H € X —G = A, that is, 4 6= @.
Similar B =6 @. Since GNH =@ and G U H =X, then
Chho(A)NB=ANB=X-GONX-H)=X-(GUH)=X—-X=0.
Similar, 4 N Cls,(B) = @. Note that
AUB=X-GUX-H=X-(GNH)=X-0=X

Then by Theorem (5.7), (X,7) is a fow—disconnected space. ]

Theorem 5.9. A topological space (X,7) is a fwo—connected space if there is no nonempty proper subset of X which is both
Pw—open and fw—closed.

Proof. Suppose that (X,7) is a fw—connected space. Let 4 be a nonempty proper subset of X which is both fow—open and
Pw—closed. Then X — A4 is a nonempty proper subset of X which is both faw—open and fw—closed. Since 4 U (X — A4) =
X, then by Theorem (5.7), X is a fw—disconnected space and this a contradiction. So there is no nonempty proper
subset of X which is both fawv—open and faw—closed set.

Conversely, suppose that (X;7) is a fw—disconnected space. Then by Theorem (5.7), X is the union of two disjoint
nonempty fw—open subsets, say 4 and B. Then X — B =4 is fw—closed subset of X. Since B 6= @ and X =4 U B then 4
is a nonempty proper subset of X which is both fw—open and fw—closed. This is a contradiction with the hypothesis.
Hence (X7) is a fw—connected space. []

Theorem 5.10. Let /: (X;7) — (Y,p) be a fw—continuous surjection function. If X is a fw—connected space then Y is

connected space.

Proof. Suppose that Y is a disconnected space. Then by Theorem (5.7), Y is the union of two disjoint nonempty open

subsets, say G and H. Since f'is a foo—continuous then f/(G) and f'(H) are fo—open sets in X. Since G 6= 0, H=6 @

and f'is a surjection then f}(H) 6= @ and f'/(G) 6= @. Since G N H= @ and G U H = X then
rl@nfiu=rGnmH=1'@)=9

SQUiE) = (GUH)=f'(Y)=X
Hence X is the union of two disjoint nonempty few—open subsets, that is, X is a fw—disconnected space. This is a a
contradiction. Hence Y is a connected space. []

and

Theorem 5.11. Let f: (X;7) — (¥,p) be a slightly fw—continuous surjection function. If X is a fcw—connected space then
Y is connected space.

Proof. Suppose that Y is a disconnected space. Then by Theorem (2.2), Y is the union of two disjoint nonempty open
subsets, say G and B. Then G and B are clopen sets in Y. Since f'is a slightly fo—continuous then f!(G) and f!(H) are
Bow—open sets in X. Since G 6= @, H 6= @ and fis a surjection then f"'(H) =6 @ and f'(G) =6 @. Since GN H=@ and G
U H= Xthen f{(G) N fY(H) = @ and f(G) U f(H) = X. Hence X is the union of two disjoint nonempty Bew—open
subsets, that is, X is a fow—disconnected space. This is aa contradiction. Hence Y is a connected space. []
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