EPH - International Journal of Mathematics and Statistics

ISSN (Online): 2208-2212 Volume 2 Issue 1 May 2016

DOI:https://doi.org/10.53555/eijms.v6i1.48

SEPARATION AXIOMS AND CONNECTEDNESS FOR βω−OPEN SETS

Mohammed Al-Hawmi1*, Amin Saif2 and Yahya Awbal3

2 Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen Department of Mathematics, Faculty of Education, Arts and Sciences, University of Saba Region, Mareb, Yemen

**Corresponding Author:-*

Abstract:-

Our propose in this paper is to introduce the new classes for separation axioms in topo logical spaces by using βω−open *sets and G*βω−open sets, called βω−separation axioms and *G*βω−*separation axioms. Furthermore, we introduce the stronger form of connected spaces.*

Keywords:-*Open set; Generalized closed set; Connectedness.*

AMS classification: Primary 54A05, 54A10, 54C10

1 INTRODUCTION

In 1970 Levine, [7], introduced the notion of a generalized closed set. A subset *A* of a space X is called a generalized closed set (simply *g*−closed set) if *Cl* (*A*) ⊆ *U* whenever *A* ⊆ *U* and U is open set. The complement of a generalized closed set (simply *g*−open set) is called a generalized open set. In 1982 Hdeib [5] introduced the notion of a ω−open sets. A subset *A*_{of} a space *X* is called ω −open set if for each $x \in A$, there is an open set U_x containing *x* such that U_x −*A* is a countable set. The complement of a ω−open set is called a ω−closed set. In 1983 the authors [1] introduced the weak form for an open set which is called a β−open set. A subset *A* of a space *X* is called a β−open set if *A* ⊆ *Cl*(*Int*(*Cl*(*A*))). The complement of a β−open set is called a β−closed set. In 2005 Al-Zoubi [2] introduced the generalization prop erty of ω−open sets. A subset *A* of a space *X* is called generalized ω−closed set if *Cl*ω(*A*) ⊆ *U* whenever *A* ⊆ *U* and *U* is open set. The complement of generalized ω−closed set is called generalized ω−open set, where *Cl*ω(*A*) is the ω−closure set of *A*. In 2009 Noiri and Noorani [8] introduced the notion of βω−open set as weak form for a ω−open sets and a β−open sets. A subset *A* of a space *X* is called a βω−open set if *A* ⊆ *Cl*(*Int*ω(*Cl*(*A*))). The complement of a βω−open set is called a βω−closed set, where *Int*ω(*A*) is the ω−interior set of *A*. In 2019 [9] we introduced the notion of *G*βω−closed set as weak form for a βω−closed sets and a β−open sets. A subset *A* of a topological space (X,τ) is called generalized βω−closed (simply $G_{\beta\omega}$ -closed) set if $Cl_{\beta\omega}(A) \subseteq U$ whenever $A \subseteq U$ and *U* is open subset of (X,τ) . The complement of $G_{\beta\omega}$ -closed set is called generalized βω−open (simply *G*βω−open) set, where *Cl*βω (*A*) is the βω−closure set of *A* which defined as the intersection of all βω−closed subsets of *X* containing *A*. Similar, the βω−interior set of *A* is defined as the union of all $\beta\omega$ -open subsets of *X* contained in *A* and is denoted by $Int_{\beta\omega}(A)$.

This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the new classes for separation axioms in topological spaces, called $\beta\omega$ -separation axioms. Furthermore, the relationship with the other known axioms will be studied. In

90

Section 4 we introduce also the new classes for separation axioms in topological spaces, called *G_{Bω}*−separation axioms. Furthermore, the relationship with the other known axioms will be also studied. In Section 5 we introduce the stronger form of connected spaces.

2 Preliminaries

For a topological space (X, τ) and $A \subseteq X$, throughout this paper, we mean $Cl(A)$ and $Int(A)$ the closure set and the interior set of *A*, respectively.

A subset of topological space is called a *clopen* set if it is both open and closed set. A topological space (X,τ) is called *0 dimensional space* , [6] if it has a base consisting clopen sets.

Definition 2.1. [6] A topological space (X, τ) is called a *disconnected space* if it is the union of two nonempty subsets *A* and *B* such that $Cl(A) \cap B = \emptyset$ and $A \cap Cl(B) = \emptyset$.

Theorem 2.2. [6] A topological space (X, τ) is a disconnected space if and only if it is the union of two disjoint nonempty open subsets.

Theorem 2.3. [6] For a topological space (X,τ) and $A,B \subseteq X$, if *B* is an open set in *X* then $Cl(A)$ *capB* $\subseteq Cl(A \cap B)$.

Theorem 2.4. [7] Every closed set is a *g*−closed set.

Definition 2.5. [7] A topological space (X, τ) is called a $T_{1/2}$ −*space* if every *g*−closed set is closed set.

Theorem 2.6. [4] A topological space (X,τ) is $T_{1/2}$ −*space* if and only if every singleton set is open or closed set.

Definition 2.7. [6] A topological space (X,τ) is called:

- 1. *T*₀−*space* if for two points *x* $6 = y \in X$ in *X*, there is open set *G* in *X* such that $x \in G$ and $y \in G$.
- 2. T_1 -space if for two points $x 6 = y \in X$ in X, there are two open sets G and U in X such that $x \in G$, $y \in G$, $y \in U$ and x ∈*/ U*.
- 3. *T*2−*space or Hausdorff space*if for two points *x* 6= *y* ∈ *X* in *X*, there are two open sets*G* and *U* in *X* such that *x* ∈ *G*, *y* ∈ *U* and *U* ∩ *G* = ∅.
- 4. *regular space* if for each closet set *F* in *X* and each $x \in F$, there are two open sets G and U in X such that $F \subseteq G$, x $∈$ *U* and *U* ∩ *G* = \emptyset . A topological space (*X*,τ) is called *T*₃−*space* if it is regular space and *T*₁−space.
- 5. *Normal space* if for each two disjoint closet sets F and M in X, there are two open sets G and U in X such that $F \subseteq G$, *M* ⊆ *U* and *U* ∩ *G* = \emptyset . A topological space (*X*,τ) is called *T*₄−*space* if it is normal space and *T*₁−space.

Theorem 2.8. [6] A topological space (X, τ) is T_1 −space if and only if every singleton set is closed set.

Theorem 2.9. [6] A topological space (X, τ) is regular space if and only if for each $x \in X$ and for each open set *N* in *X* containing *x*, there is an open set *M* in *X* containing *x* such that $Cl(M) \subseteq N$.

Theorem 2.10. [5] Every open set is ω −open set.

Theorem 2.11. [5] For a topological space (X, τ) , the collection of all ω -open sets with a set *X* forms a topological space.

Theorem 2.12. [8] The union of arbitrary of $\beta\omega$ −open sets is $\beta\omega$ −open set.

Theorem 2.13. [8] Every ω -open set is $\beta\omega$ -open set.

Definition 2.14. [6] A function f : $(X, \tau) \to (Y, \rho)$ of a space (X, τ) into a space (Y, ρ) is called *continuous function* if $f^{-1}(U)$ is an open set in *X* for every open set *U* in *Y* .

Definition 2.15. A function $f: (X,\tau) \to (Y,\rho)$ of a space (X,τ) into a space (Y,ρ) is called:

- 1. *open function* [6] if $f(U)$ is open set in *Y* for every open set *U* in *X*.
- 2. *closed function* [6] if $f(U)$ is closed set in *Y* for every closed set *U* in *X*.
- 3. $\beta\omega$ –*continuous function* [9] if $f^{\text{-}1}(U)$ is a $\beta\omega$ –open set in *X* for every open set *U* in *Y*.

Theorem 2.16. [9] Every $\beta\omega$ −open set is $G_{\beta\omega}$ −open set.

Theorem 2.17. [9] Let (X,τ) be a topological space. If (X,τ) is a $T_{1/2}$ -space then every $G_{\beta\omega}$ -closed set in X is $\beta\omega$ -closed set in *X*.

3 βω−**Separation axioms**

Definition 3.1. A topological space (X, τ) is called:

- 1. $βω^2$ -*space* if for two points *x* 6= *y* ∈ *X* in *X*, there are two $βω$ -open sets *G* and *U* in *X* such that *x* ∈ *G*, *y* ∈ *U* and *U* ∩ $G = \emptyset$.
- 2. βω−*regular space* if for each closet set *F* in *X* and each *x /*∈ *F*, there are two βω−open sets *G* and *U* in *X* such that *F* $\subseteq G$, *x* ∈ *U* and *U* ∩*G* = \emptyset . A topological space (*X*,τ) is called β_{ω} ³-space if it is $\beta\omega$ -regular space and *T*₁-space.
- 3. βω−*normal space* if for each two disjoint closet sets *F* and *M* in *X*, there are two βω−open sets *G* and *U* in *X* such that $F \subseteq G$, $M \subseteq U$ and $U \cap G = \emptyset$. A topological space (X, τ) is called $\beta_{\omega}^{\{4\}}$ -space if it is $\beta\omega$ -normal space and T_1 -space.

The proof of the following theorem, Theorem (3.3) and Theorem (3.4) follow from the fact that open sets are $\beta\omega$ −open sets.

Theorem 3.2. Every *T*₂−space is a^{β_{ω}^2} –space.

Theorem 3.3. Every regular space is a $\beta\omega$ -regular space.

Theorem 3.4. Every normal space is a $\beta\omega$ -normal space. The converse of the Theorems (3.2), (3.3) and (3.4) need not be true.

Example 3.5. Let *X* = {1,2,3}. The indiscrete topological space (*X,T_I*), where $T_I = \{\emptyset, X\}$, is β_{ω}^2 -space, β_{ω} -regular space and βω−normal space, since all subsets of countable topological space are βω−open sets, but it is not *T*₂−space, regular space or normal space.

Theorem 3.6. Every β_{ω}^3 -space is a β_{ω}^3 -space.

Proof. Let (X, τ) be a β_0^3 -space and x 6= $y \in X$ be any points in *X*. Since *X* is a *T*₁-space then by Theorem (2.8), $\{x\}$ is a closed set in *X* and y /∈{*x*}. Since *X* is a $\beta\omega$ -regular space then there are two $\beta\omega$ -open sets *G* and *U* in *X* such that *x* $\in \{x\} \subseteq G$, *y* ∈ *U* and *U* ∩ *G* = Ø. Hence *X* is a β_{ω}^2 – space. \Box

Theorem 3.7. Every β_{ω}^4 -space is a β_{ω}^3 -space.

Proof. Let (X, τ) be a β_{ω} ⁴-space. Let *F* be any closed set in *X* and $x \in F$ be any points in *X*. Since *X* is a *T*₁-space then by Theorem (2.8), $\{x\}$ is a closed set in *X* and *F* ∩ $\{x\} = \emptyset$. Since *X* is a $\beta\omega$ -normal space then there are two $\beta\omega$ -open sets *G* and *U* in *X* such that $x \in \{x\} \subseteq G$, $F \subseteq U$ and $U \cap G = \emptyset$. Hence *X* is $a\theta_{\omega}^{3}$ -space. \square We have the following relation.

Theorem 3.8. A topological space (X, τ) is a β_{ω}^2 -space if and only if for each $x \in X$ and for y 6= $x \in X$, there is a β_{ω} -open set *M* in *X* containing *x* such that $y \in Cl_{\beta\omega}(M)$.

Proof. Suppose that (X, τ) is β_{ω}^2 -space. Let $x \in X$ be any point in *X* and y 6= *x* be any point in *X*. Then there are two $βω$ −open sets *G* and *U* in *X* such that $x ∈ G$, $y ∈ U$ and $U ∩ G = ∅$. Take $M = G$ is a $βω$ −open set in *X* containing *x* and so $y \in M \subseteq Cl_{\beta\omega}(M)$.

Conversely, Let x 6= $y \in X$ be any points in *X*. and By the hypothesis, there is a $\beta\omega$ -open set *M* in *X* containing *x* such that $y \in Cl_{\beta\omega}(M)$. Then $X - Cl_{\beta\omega}(M)$ is a $\beta\omega$ -open set M in X containing y and $M \cap [X - Cl_{\beta\omega}(M)] = \emptyset$. Then (X, τ) is β_{ω}^2 -space.

Theorem 3.9. A topological space (X, τ) is a $\beta\omega$ -regular space if and only if for each $x \in X$ and for each open set *N* in X containing *x*, there is a $\beta\omega$ -open set *M* in *X* containing *x* such that $Cl_{\beta\omega}(M) \subseteq N$.

Proof. Suppose that (X, τ) is $\beta\omega$ -regular space. Let $x \in X$ be any point in *X* and *N* be any open set in *X* containing *x*. Then *X* − *N* is a closed set in *X* and *x /*∈ *X* − *N*. Since (X,τ) is βω−regular space then there are two βω−open sets *G* and *U* in *X* such that $X - N \subseteq G$, $x \in U$ and $U \cap G = \emptyset$. Take $M = U$ is a $\beta\omega$ -open set in X containing x. Then $M = U \subseteq X - G$, this implies,

$$
Cl_{\beta\omega}(M) \subseteq Cl_{\beta\omega}(X - G) = X - G \subseteq N.
$$

Conversely, Let *F* be any closed set in *X* and $x \in F$. Then $x \in X - F$ and $X - F$ is an open set in *X* containing *x*. By the hypothesis, there is a $\beta\omega$ -open set *M* in *X* containing *x* such that $Cl_{\beta\omega}(M) \subseteq X - F$. Then $F \subseteq X - Cl_{\beta\omega}(M)$ and $X -$ *Cl*βω(*M*) is a βω−open set in *X*. Since *M* is a βω−open set in *X* containing *x* and *M* \cap [*X* − *Cl*βω(*M*)] = Ø, then (*X*,τ) is βω−regular space. $βω$ -regular space.

Theorem 3.10. A topological space (X, τ) is $\beta\omega$ -normal space if and only if for each closed set *F* in *X* and for each open set *G* in *X* containing *F*, there is a $\beta\omega$ -open set *V* in *X* containing *F* such that $Cl_{\beta\omega}(V) \subseteq G$.

Proof. Suppose that (X, τ) is $\beta\omega$ -normal space. Let *F* be any closed set in *X* and *G* be any open set in *X* containing *F*. Then $X - G$ is a closed set in *X* and $F \cap (X - G) = \emptyset$. Since (X, τ) is $\beta\omega$ -normal space then there are two $\beta\omega$ -open sets *H* and *U* in *X* such that $X - G ⊆ U$, $F ⊆ H$ and $U ∩ H = ∅$. Take $V = H$ is a $\beta\omega$ -open set in *X* containing *F*. Then $V = H ⊆ X − U$, this implies,

$$
Cl_{\beta\omega}(V) \subseteq Cl_{\beta\omega}(X-U) = X-U \subseteq G.
$$

Conversely, Let *F* and *M* be any two closed sets in *X* such that $F \cap M = \emptyset$. Then $M \subseteq X-F$ and $X-F$ is an open set in *X* containing closed set *M*. By the hypothesis, there is a $\beta\omega$ -open set *V* in *X* containing *M* such that $Cl_{\beta\omega}(V) \subseteq X - F$. Then $F \subseteq X - Cl_{\beta\omega}(V)$ and $X - Cl_{\beta\omega}(V)$ is a $\beta\omega$ -open set in *X*. Since *V* is a $\beta\omega$ -open set in *X* containing *x* and $V \cap [X - Cl_{\beta\omega}(V)]$)] = \emptyset , then (X, τ) is $\beta \omega$ −normal space. \Box

Theorem 3.11. If a function f : $(X,\tau) \to (Y,\rho)$ is $\beta\omega$ -continuous injection and *Y* is a T_2 -space then *X* is a β_ω^2 -space. *Proof.* Let *Y* be a *T*₂−space and x 6= $y \in X$ be any points in *X*. Since *f* is injection then $f(x)$ 6= $f(y) \in Y$. Then there are two open sets *G* and *U* in *Y* such that $f(x) \in G$, $f(y) \in U$ and $U \cap G = \emptyset$. Then $x \in f^{-1}(G)$, $y \in f^{-1}(U)$ and

Since G and U are open sets in Y and f is a
$$
\beta\omega
$$
-continuous then $f^{-1}(U) = f^{-1}(\emptyset) = \emptyset$.
\n β_{ω}^2 -space. \square

A subset of topological space is called a βω−*clopen* set if it is both βω−open and βω−closed set. sets.

Definition 3.12. A function $f: (X, \tau) \to (Y, \rho)$ of a topological space (X, τ) into a space (Y, ρ) is called *slightly βω*−*continuous function* if $f^{-1}(U)$ is a $\beta\omega$ -clopen set in *X* for every clopen set *U* in *Y*.

Theorem 3.13. Let $f : (X,\tau) \to (Y,\rho)$ be a slightly $\beta\omega$ -continuous injection function and *Y* be 0-dimensional. If *Y* is a *T*₂−space then *X* is a β_{ω} ²−space.

Proof. Let *Y* be a *T*₂−space and x 6= $y \in X$ be any points in *X*. Since *f* is injection then $f(x)$ 6= $f(y) \in Y$. Then there are two open sets *G* and *U* in *Y* such that $f(x) \in G$, $f(y) \in U$ and $U \cap G = \emptyset$. Since *Y* is 0-dimensional space there are two clopen sets G_1 and U_1 in Y such that

 $f(x) \subseteq G_1 \subseteq G$ and $f(y) \subseteq U_1 \subseteq U$. Then $x \subseteq f^{-1}(G_1) \subseteq f^{-1}(G)$ and $y \subseteq f$ $f^{-1}(U_1) \subseteq f^{-1}(U)$. $\text{and } f^{-1}(G_1) \cap f^{-1}(U_1) \subseteq f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$ Since G_1 and U_1 are clopen sets in Y and f is a slightly $\beta\omega$ -continuous then $f^{-1}(U)$ and $f^{-1}(G)$ are $\beta\omega$ -open sets in X . Hence *X* is a β_{ω}^2 –space. \square

Theorem 3.14. Let $f: (X, \tau) \to (Y, \rho)$ be $\beta\omega$ -continuous injection function. If f is an open (or closed) function and Y is a regular space then *X* is a $\beta\omega$ -regular space.

Proof. 1. Firstly suppose *f* is an open function. Let $x \in X$ be any point in *X* and *U* be any open set containing *x*. Then $f(x)$ ∈ *f*(*U*) and *f*(*U*) is an open set in *Y* . Since *Y* is a regular space then by Theorem(2.9), there is an open set *M* in *Y* containing *f*(*x*) such that *Cl*(*M*) ⊆ *f*(*U*). Since *f* is a $\beta\omega$ -continuous then $V = f^{-1}(M)$ is a $\beta\omega$ -open set in *X* containing *x*. Since *f* is injection then

$$
f^1[Cl(M)] \subseteq f^1[f(U)] \subseteq U.
$$

Then

$$
Cl_{\beta\omega}(V) = Cl_{\beta\omega}[f^{-1}(M)] \subseteq f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.
$$

Hence by Theorem (3.9), *X* is a $\beta\omega$ -regular space.

2. Secondly suppose *f* is a closed function. Let *F* be any closed set in *X* and $x \in F$. Then $f(x) \in f(F)$ and $f(F)$ is a closed set in *Y*. Since *Y* is a regular space then there are two open sets *G* and *U* in *Y* such that $f(F) \subseteq G$, $f(x) \in U$ and $U \cap G =$ Ø. Since *f* is injection then $F ⊆ f¹(G)$, $x ∕ ∈ f¹(U)$ and

$$
f^{1}(G) \cap f^{1}(U) = f^{1}(G \cap U) = f^{1}(\emptyset) = \emptyset.
$$

Since *f* is a $\beta\omega$ -continuous then $f^{-1}(G)$ and $f^{-1}(U)$ are $\beta\omega$ -open in *X*. Hence *X* is a $\beta\omega$ -regular space.

Theorem 3.15. Let $f: (X,\tau) \to (Y,\rho)$ be slightly $\beta\omega$ -continuous injection and *Y* is 0-dimensional space. If *f* is an open (or closed) function then *X* is a $\beta\omega$ -regular space.

Proof. 1. Firstly suppose *f* is an open function. Let $x \in X$ be any point in *X* and *U* be any open set containing *x*. Then $f(x)$ \in *f*(*U*) and *f*(*U*) is an open set in *Y*. Since *Y* is a 0-dimensional space then there is a clopen set *V* in *Y* such that $f(x) \in V$ $\subseteq f(U)$. Since *f* is injection then $x \in f^{-1}(V) \subseteq U$. Since *f* is a $\beta\omega$ -continuous then $f^{-1}(V)$ is a $\beta\omega$ -clopen set in *X* containing *x*. Hence

$$
Cl_{\beta\omega}(f^{-1}(V)) = f^{-1}(V) \subseteq U.
$$

Hence by Theorem (3.9), *X* is a $\beta\omega$ -regular space.

2. Secondly suppose *f* is a closed function. Let *F* be any closed set in *X* and $x \in$ *F*. Then $f(x) \in$ *f*(*F*) and *f*(*F*) is a closed set in *Y*. Then $f(x) \in Y - f(F)$ and $Y - f(F)$ is an open set in *Y*. Since *Y* is a 0-dimensional space then there is a clopen set *V* in *Y* such that $f(x) \in V \subseteq Y - f(F)$. Since *f* is injection then

 $x \in f^{-1}(V) \subseteq f^{-1}[Y - f(F)] \subseteq X - F.$

Since *f* is a slightly $\beta\omega$ -continuous then $f^{-1}(V)$ is a $\beta\omega$ -clopen set in *X* containing *x* and *X* − *f*⁻¹(*V*) is a $\beta\omega$ −clopen set in *X* such that $F \subseteq X - f^{-1}(V)$ Hence *X* is a $\beta\omega$ −regular space. \Box

Theorem 3.16. Let $f: (X, \tau) \to (Y, \rho)$ be $\beta\omega$ -continuous injection function. If f is closed function and Y is a normal space then *X* is a $\beta\omega$ -normal space.

Proof. Suppose *F* and *H* are any two closed sets in *X* such that $F \cap H = \emptyset$ since Since *f* is injection and closed function then $f(F)$ and $f(H)$ are closed sets in *Y* and

 $f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset$.

Since *Y* is a normal space then there are two open sets *G* and *U* in *Y* such that $f(F) \subseteq G$, $f(H) \subseteq U$ and $U \cap G$ $= \emptyset$. Since *f* is injection then $F \subseteq f^{-1}(G)$, $H \subseteq f^{-1}(U)$ and

 $f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$

 \Box Since *f* is a $\beta\omega$ -continuous then $f^{\text{-}1}(G)$ and $f^{\text{-}1}(U)$ are $\beta\omega$ -open in *X*. Hence *X* is a $\beta\omega$ -normal space.

Theorem 3.17. Let $f: (X, \tau) \to (Y, \rho)$ be slightly $\beta\omega$ -continuous injection and *Y* is 0 dimensional space. If *f* is a closed function and *Y* is a normal space then *X* is a $\beta\omega$ -normal space.

Proof. Suppose *F* and *H* are any two closed sets in *X* such that $F \cap H = \emptyset$. Since *f* is injection and closed function then *f*(*F*) and *f*(*H*) are closed sets in *Y* and

 $f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset$.

Since *Y* is a normal space then there are two open sets *G* and *U* in *Y* such that $f(F) \subseteq G$, $f(H) \subseteq U$ and $U \cap G = \emptyset$. Since *Y* is a 0-dimensional space then for every $g \in f(F)$ and $u \in f(H)$ there are clopen sets U_u and G_g in *Y* such that

$$
u \in U_u \subseteq U \quad \text{and} \quad g \in G_g \subseteq G.
$$

Then $f(H) \subseteq U$ {*U_u* : $u \in f(H)$ and U_u is a clopen set in Y } $\subseteq U$ and $f(F) ⊆ ∪ {G_g : g ∈ f(F)}$ and G_g is a clopen set in Y } ⊆ *G*. This implies, $H \subseteq \cup \{f^{-1}(U_u) : u \in f(H) \text{ and } U_u \text{ is a clopen set in } Y \} \subseteq f^{-1}(U)$

and

 $F \subseteq \cup \{f^{-1}(G_g) : g \in f(F) \text{ and } G_g \text{ is a clopen set in } Y\} \subseteq f^{-1}(G)$.

Since *f* is a slightly $\beta\omega$ -continuous then $f^{-1}(U_u)$ and $f^{-1}(G_g)$ are $\beta\omega$ -open in *X* for all $g \in f(F)$ and $u \in f(H)$. So that $M = \bigcup \{ f^{-1}(U_u) : u \in f(H) \}$ and $N = \bigcup \{ f$ $f^{-1}(G_g)$: $g \in f(F)$ }

are βω−open in *X* and *M* ∩ *N* ⊆ *f*⁻¹(*U*) ∩ *f*⁻¹(*G*) ⊆ *f*⁻¹(*U*) ∩ *G*) = *f*⁻¹(\emptyset) = \emptyset . Hence *X* is a βω−normal space.

4 *G*βω−**Separation axioms**

Definition 4.1. A topological space (X, τ) is called:

- 1. $G^2_{\beta\omega}$ -space if for two points $x \in y \in X$ in X, there are two $G_{\beta\omega}$ -open sets G and U in X such that $x \in G$, $y \in U$ and U $∩ G = ∅.$
- 2. *G*βω−*regular space* if for each closet set *F* in *X* and each *x /*∈ *F*, there are two *G*βω−open sets *G* and *U* in *X* such that *F* ⊆ *G*, *x* ∈ *U* and *U* ∩*G* = ∅. A topological space (*X*,τ) is called *G*³_{*βω*}−*space* if it is *G_{βω}*−regular space and *T*₁−space.
- 3. *G*βω−*normal space* if for each two disjoint closet sets *F* and *M* in *X*, there are two *G*βω−open sets *G* and *U* in *X* such that $F \subseteq G$, $M \subseteq U$ and $U \cap G = \emptyset$. A topological space (X, τ) is called $G^4{}_{\beta\omega}$ -*space* if it is $G_{\beta\omega}$ -normal space and *T*1−space.

It is clear that every β_{ω}^2 -space is a $G_{\beta\omega}^2$ -space, every $\beta\omega$ -regular space is a $G_{\beta\omega}$ -regular space and every $\beta\omega$ -normal space is a *G_{βω}*−normal space.

Theorem 4.2. Every $G^3_{\beta\omega}$ -space is a $G^2_{\beta\omega}$ -space. *Proof.* Similar for Theorem (3.6).

Theorem 4.3. Every $G^4_{\beta\omega}$ -space is a $G^3_{\beta\omega}$ -space. *Proof.* Similar for Theorem (3.7).

Theorem 4.4. Let (X,τ) be a $T_{1/2}$ -space. If *X* is a $G^2_{\beta\omega}$ -space then *X* is a β_{ω}^2 -space. *Proof.* For two points x 6= $y \in X$ in X , since X is a $G^2_{\beta\omega}$ -space, there are two $G_{\beta\omega}$ -open sets G and U in X such that $x \in$ *G*, *y* ∈ *U* and *U* ∩*G* = \emptyset . Since *X* is a *T*_{1/2}−space, then by Theorem (2.17), *G* and *U* are $\beta\omega$ −open sets in *X*. Hence *X* is a β_{ω}^2 –space. \square

Theorem 4.5. Let (X, τ) be a $T_{1/2}$ -space. If *X* is a $G_{\beta\omega}$ -regular space then *X* is a $\beta\omega$ -regular space *Proof.* For each closet set *F* in *X* and each x /∈ *F*, since *X* is a $G_{\beta\omega}$ -regular space, there are two $G_{\beta\omega}$ -open sets *G* and *U* in *X* such that $F ⊆ G$, $x ∈ U$ and $U ∩ G = \emptyset$. Since *X* is a *T*_{1/2}−space, then by Theorem (2.17), *G* and *U* are $\beta\omega$ −open sets in *X*. Hence *X* is a $\beta\omega$ −regular space. \Box

Corollary 4.6. Every $G^3_{\beta\omega}$ -space is a β^3_{ω} -space. *Proof.* Use above theorem, since every T_1 −space is $T_{1/2}$ −space.

Theorem 4.7. Let (X, τ) be a $T_{1/2}$ −space. If *X* is a $G_{\beta\omega}$ −normal space then *X* is a $\beta\omega$ −normal space *Proof.* For each two disjoint closet sets *F* and *M* in *X*, since *X* is a *G*_{βω}−normal space, there are two *G*_{βω}−open sets *G* and *U* in *X* such that $F \subseteq G$, $M \subseteq U$ and $U \cap G = \emptyset$. Since *X* is a *T*_{1/2}−space then by Theorem (2.17), *G* and *U* are $\beta\omega$ −open sets in *X*. Hence *X* is a $\beta\omega$ −normal space. sets in *X*. Hence *X* is a $\beta\omega$ -normal space.

Corollary 4.8. Every $G^4_{\beta\omega}$ -space is a $\beta_\omega^{\ \ 4}$ -space. *Proof.* Use above theorem, since every T_1 −space is $T_{1/2}$ −space. We have the following relation.

Theorem 4.9. A topological space (X, τ) is $G^2_{\beta\omega}$ -space if and only if for each $x \in X$ and for $y \in X \in X$, there is a $G_{\beta\omega}$ -open set *M* in *X* containing *x* such that $y \in Cl_{\beta\omega}(M)$. *Proof.* Similar for Theorem (3.8). \Box

Theorem 4.10. A topological space (X, τ) is $G_{\beta\omega}$ -regular space if and only if for each $x \in X$ and for each open set *N* in *X* containing *x*, there is a $G_{\beta\omega}$ -open set *M* in *X* containing *x* such that $Cl_{\beta\omega}(M) \subseteq N$. \Box *Proof.* Similar for Theorem (3.9).

Theorem 4.11. A topological space (X, τ) is $G_{\beta\omega}$ -normal space if and only if for each closed set *F* in *X* and for each open set *G* in *X* containing *F*, there is a $G_{\beta\omega}$ -open set *V* in *X* containing *F* such that $Cl_{\beta\omega}(V) \subseteq G$. *Proof.* Similar for Theorem (3.10). \Box

Theorem 4.12. If a function f : $(X, \tau) \to (Y, \rho)$ is $G_{\beta\omega}$ -continuous injection and *Y* is a T_2 -space then *X* is a $G_{\beta\omega}$ -space. *Proof.* Let *Y* be a *T*₂−space and x 6= $y \in X$ be any points in *X*. Since *f* is injection then $f(x)$ 6= $f(y) \in Y$. Then there are two open sets *G* and *U* in *Y* such that $f(x) \in G$, $f(y) \in U$ and $U \cap G = \emptyset$. Then $x \in f^{-1}(G)$, $y \in f^{-1}(U)$ and

$$
f^1(G) \cap f^1(U) = f^1(G \cap U) = f^1(\emptyset) = \emptyset.
$$

Since *G* and *U* are open sets in *Y* and *f* is a $G_{\beta\omega}$ -continuous then $f^{-1}(U)$ and $f^{-1}(G)$ are $G_{\beta\omega}$ -open sets in *X*. Hence *X* is a *G*2 βω−space.

Theorem 4.13. Let f : $(X,\tau) \to (Y,\rho)$ be $G_{\beta\omega}$ -continuous injection function. If *f* is an open (or closed) function and *Y* is a regular space then *X* is a $G_{\beta\omega}$ -regular space.

 \Box

 \Box

Proof. 1. Firstly suppose *f* is an open function. Let $x \in X$ be any point in *X* and *U* be any open set containing *x*. Then $f(x)$ \in *f*(*U*) and *f*(*U*) is an open set in *Y*. Since *Y* is a regular space then by Theorem(2.9), there is an open set *M* in *Y* containing $f(x)$ such that $Cl(M) \subseteq f(U)$. Since f is a $G_{\beta\omega}$ -continuous then $V = f^{-1}(M)$ is a $G_{\beta\omega}$ -open set in X containing x. Since f is injection then

$$
f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.
$$

Hence

 $Cl_{\beta\omega}(V) = Cl_{\beta\omega}[f^{-1}(M)] \subseteq f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.$

Then by Theorem (4.10), *X* is a $G_{\beta\omega}$ -regular space.

2. Secondly suppose *f* is a closed function. Let *F* be any closed set in *X* and $x \in F$. Then $f(x) \in /f(F)$ and $f(F)$ is a closed set in *Y*. Since *Y* is a regular space then there are two open sets *G* and *U* in *Y* such that $f(F) \subseteq G$, $f(x) \in U$ and $U \cap G =$ Ø. Since *f* is injection then $F ⊆ f¹(G)$, $x ∕ ∈ f¹(U)$ and

 $f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$

Since *f* is a $G_{\beta\omega}$ -continuous then $f^{-1}(G)$ and $f^{-1}(U)$ are $G_{\beta\omega}$ -open in *X*. Hence *X* is a $G_{\beta\omega}$ -regular space.

Theorem 4.14. Let $f: (X,\tau) \to (Y,\rho)$ be $G_{\beta\omega}$ -continuous injection function. If f is closed function and Y is a normal space then *X* is a $G_{\beta\omega}$ -normal space.

Proof. Suppose *F* and *H* are any two closed sets in *X* such that $F \cap H = \emptyset$. since Since *f* is injection and closed function then $f(F)$ and $f(H)$ are closed sets in *Y* and

$$
f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset.
$$

Since *Y* is a normal space then there are two open sets *G* and *U* in *Y* such that $f(F) \subseteq G$, $f(H) \subseteq U$ and $U \cap G$ $= \emptyset$. Since *f* is injection then $F \subseteq f^{-1}(G)$, $H \subseteq f^{-1}(U)$ and

$$
f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.
$$

Since *f* is a $G_{\beta\omega}$ -continuous then $f^{-1}(G)$ and $f^{-1}(U)$ are $G_{\beta\omega}$ -open in *X*. Hence *X* is a $G_{\beta\omega}$ -normal space.

5 βω−**Connectedness property**

Definition 5.1. Let (X,τ) be a topological space and *A,B* be two nonempty subsets of *X*. The sets *A* and *B* are called a $\beta\omega$ -*separated sets* if $Cl_{\beta\omega}(A) \cap B = \emptyset$ and $A \cap Cl_{\beta\omega}(B) = \emptyset$.

Remark 5.2. Let (X, τ) be a topological space. Then

1. Any $\beta\omega$ -separated sets are disjoint sets, since $A \cap B \subseteq A \cap Cl_{\beta\omega}(B) = \emptyset$.

2. Any two nonempty $\beta\omega$ -closed sets in *X* are $\beta\omega$ -separated if they are disjoint sets.

Definition 5.3. A topological space (X, τ) is called a $\beta\omega$ –*disconnected space* if it is the union of two $\beta\omega$ –separated sets. Otherwise A (X,τ) is called a βω−*connected space*.

Example 5.4. Any a countable topological space (X, τ) is a $\beta\omega$ -disconnected space if *X* has more that one point. The proof of the following theorem is clear since $Cl_{\beta\omega}(A) \subset Cl(A)$.

Theorem 5.5. Every disconnected space is a βω−disconnected space. The converse of the above theorem need not be true.

Example 5.6. In the topological space (*X,T*), where $T = {\emptyset, X}$ and $X = {a,b}$, is $\beta\omega$ -disconnected space but it is a connected space.

Theorem 5.7. A topological space (X, τ) is a $\beta\omega$ -disconnected space if and only if it is the union of two disjoint nonempty $\beta\omega$ -open sets.

Proof. Suppose that (X, τ) is a $\beta \omega$ -disconnected space. Then *X* is the union of two $\beta \omega$ -separated sets, that is, there are two nonempty subsets *A* and *B* of *X* such that

 $Cl_{\beta\omega}(A) \cap B = \emptyset$, $A \cap Cl_{\beta\omega}(B) = \emptyset$ and $A \cup B = X$.

Take $G = X - Cl_{\beta\omega}(A)$ and $H = X - Cl_{\beta\omega}(B)$. Then *G* and *H* are $\beta\omega$ -open sets. Since *B* 6= Ø and $Cl_{\beta\omega}(A) \cap B = \emptyset$, then $B \subseteq$ $X - Cl_{\beta\omega}(A)$, that is, $G = X - Cl_{\beta\omega}(A)$ 6= \emptyset . Similar H 6= \emptyset . Since $Cl_{\beta\omega}(A) \cap B = \emptyset$, $A \cap Cl_{\beta\omega}(B) = \emptyset$ and $A \cup B = X$, then *X* − (*G* ∩ *H*) = (*X* − *G*) ∪ (*X* − *H*) = [$Cl_{\beta\omega}(A)$] ∪ [$Cl_{\beta\omega}(B)$] = *X*.

That is, $G \cap H = \emptyset$.

Conversely, suppose that (X, τ) is the union of two disjoint nonempty $\beta\omega$ -open subsets, say *G* and *H*. Take $A = X$ $-G$ and $B = X - H$. Then *A* and *B* are $\beta\omega$ -closed sets, that is, $Cl_{\beta\omega}(A) = A$ and $Cl_{\beta\omega}(B) = B$. Since $H \circ I = \emptyset$ and $H \cap G = \emptyset$, then $H \subseteq X - G = A$, that is, $A \in \emptyset$. Similar $B \subseteq \emptyset$. Since $G \cap H = \emptyset$ and $G \cup H = X$, then

 $Cl_{\beta\omega}(A) \cap B = A \cap B = (X - G) \cap (X - H) = X - (G \cup H) = X - X = \emptyset$.

Similar, $A \cap Cl_{\beta\omega}(B) = \emptyset$. Note that

A ∪ *B* = (*X* − *G*) ∪ (*X* − *H*) = *X* − (*G* ∩ *H*) = *X* − \emptyset = *X*.

That is, (X, τ) is a $\beta\omega$ −disconnected space.

Corollary 5.8. A topological space (X, τ) is a $\beta\omega$ -disconnected space if and only if it is the union of two disjoint nonempty $\beta\omega$ -closed subsets.

Volume-2 | Issue-1 | May, 2016 27

Proof. Suppose that (X, τ) is a $\beta \omega$ -disconnected space. Then by Theorem (5.7), (X, τ) is the union of two disjoint nonempty βω−open subsets, say *G* and *H*. Then *X* −*G* and *X* −*H* are βω−closed subsets. Since *G* 6= ∅, *H* 6= ∅ and *X* = *G* ∪ *H* then *X* − *G* 6= Ø, *X* − *H* 6= Ø and

$$
(X-G)\cap(X-H)=X-(G\cup H)=X-X=\emptyset.
$$

Since $G \cap H = \emptyset$ then

$$
(X - G) \cup (X - H) = X - (G \cap H) = X - \emptyset = X.
$$

Hence *X* is the union of two disjoint nonempty $\beta\omega$ -closed subsets.

Conversely, suppose that (X, τ) is the union of two disjoint nonempty $\beta\omega$ -closed subsets, say *G* and *H*. Take $A = X - \tau$ *G* and $B = X - H$. Then *A* and *B* are $\beta\omega$ -open sets. Since H 6= \emptyset and $H \cap G = \emptyset$, then $H \subseteq X - G = A$, that is, A 6= \emptyset . Similar *B* =6 \emptyset . Since *G*∩*H* = \emptyset and *G* ∪ *H* = *X*, then

$$
Cl_{\beta\omega}(A) \cap B = A \cap B = (X - G) \cap (X - H) = X - (G \cup H) = X - X = \emptyset.
$$

Similar, $A \cap Cl_{\beta\omega}(B) = \emptyset$. Note that *A* ∪ *B* = (*X* − *G*) ∪ (*X* − *H*) = *X* − (*G* ∩ *H*) = *X* − \emptyset = *X*.

Then by Theorem (5.7), (X, τ) is a $\beta\omega$ -disconnected space.

Theorem 5.9. A topological space (X, τ) is a $\beta\omega$ -connected space if there is no nonempty proper subset of X which is both $βω$ -open and $βω$ -closed.

Proof. Suppose that (X,τ) is a $\beta\omega$ -connected space. Let *A* be a nonempty proper subset of *X* which is both $\beta\omega$ -open and βω−closed. Then *X* − *A* is a nonempty proper subset of *X* which is both βω−open and βω−closed. Since *A* ∪ (*X* − *A*) = *X*, then by Theorem (5.7), *X* is a $\beta\omega$ −disconnected space and this a contradiction. So there is no nonempty proper subset of *X* which is both $\beta\omega$ -open and $\beta\omega$ -closed set.

Conversely, suppose that (X,τ) is a $\beta\omega$ -disconnected space. Then by Theorem (5.7), *X* is the union of two disjoint nonempty $\beta\omega$ -open subsets, say *A* and *B*. Then $X - B = A$ is $\beta\omega$ -closed subset of *X*. Since $B \neq \emptyset$ and $X = A \cup B$ then *A* is a nonempty proper subset of *X* which is both $\beta\omega$ −open and $\beta\omega$ −closed. This is a contradiction with the hypothesis. Hence (X,τ) is a $\beta\omega$ -connected space. \square

Theorem 5.10. Let f : $(X,\tau) \to (Y,\rho)$ be a $\beta\omega$ -continuous surjection function. If *X* is a $\beta\omega$ -connected space then *Y* is connected space.

Proof. Suppose that *Y* is a disconnected space. Then by Theorem (5.7), *Y* is the union of two disjoint nonempty open subsets, say *G* and *H*. Since *f* is a $\beta\omega$ -continuous then $f^{\text{-}1}(G)$ and $f^{\text{-}1}(H)$ are $\beta\omega$ -open sets in *X*. Since *G* 6= \emptyset , *H* =6 \emptyset and *f* is a surjection then $f^{-1}(H)$ 6= \emptyset and $f^{-1}(G)$ 6= \emptyset . Since $G \cap H = \emptyset$ and $G \cup H = X$ then $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$

and

 $f^{-1}(G) \cup f^{-1}(H) = f^{-1}(G \cup H) = f^{-1}(Y) = X.$

Hence *X* is the union of two disjoint nonempty $\beta\omega$ -open subsets, that is, *X* is a $\beta\omega$ -disconnected space. This is a a contradiction. Hence *Y* is a connected space. \square

Theorem 5.11. Let $f: (X, \tau) \to (Y, \rho)$ be a slightly $\beta\omega$ -continuous surjection function. If *X* is a $\beta\omega$ -connected space then *Y* is connected space.

Proof. Suppose that *Y* is a disconnected space. Then by Theorem (2.2), *Y* is the union of two disjoint nonempty open subsets, say *G* and *B*. Then *G* and *B* are clopen sets in *Y*. Since *f* is a slightly $\beta\omega$ -continuous then $f^{-1}(G)$ and $f^{-1}(H)$ are $\beta\omega$ -open sets in *X*. Since G 6= \emptyset , H 6= \emptyset and *f* is a surjection then $f^{-1}(H)$ =6 \emptyset and $f^{-1}(G)$ =6 \emptyset . Since $G \cap H = \emptyset$ and G $\cup H = X$ then $f^{-1}(G) \cap f^{-1}(H) = \emptyset$ and $f^{-1}(G) \cup f^{-1}(H) = X$. Hence *X* is the union of two disjoint nonempty $\beta\omega$ -open subsets, that is, *X* is a βω−disconnected space. This is a a contradiction. Hence *Y* is a connected space.

References

- [1]. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β−open sets and β−continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2]. K. Al-Zoubi, On generalized ω−closed sets, International Journal of Mathematics and Mathematical Sciences, 13 (2005), 20112021.
- [3]. C. Baker, On slightly precontinuous functions, Act. Math. Hunger, 94(2002), 45-52.
- [4]. J. Dontchev and H. Maki, On θ−generalized closed sets, Int. J. Math. Math. Sci., 22 (1999), 239-249.
- [5]. H. Z. Hdeib, *w*−closed mappings, Revista Colombiana de Matematicas, 16 (1982), 65-78. [6] F. Helen, 1968, Introduction to General Topology, Boston: University of Massachusetts. [7] N. Levine, Generalized closed sets in topology, Rend. Cric. Mat.Palermo, 2 (1970), 89-96.
- [6]. T. Noiri, A. Al-omari and M. Noorani, Weak forms of ω−open sets and decompositions of continuity, European Journal of Pure and Applied Mathematics 1, (2009), 73-84.
- [7]. A. Saif and Y. Awbel, Weak forms of ω−open sets, (Submitted).