# **EPH - International Journal of Mathematics and Statistics**

ISSN (Online): 2208-2212 Volume 2 Issue 1 May 2016

DOI:https://doi.org/10.53555/eijms.v6i1.48

# SEPARATION AXIOMS AND CONNECTEDNESS FOR $\beta\omega$ -OPEN SETS

### Mohammed Al-Hawmi<sup>1\*</sup>, Amin Saif<sup>2</sup> and Yahya Awbal<sup>3</sup>

<sup>2</sup>Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen \*1.<sup>3</sup>Department of Mathematics, Faculty of Education, Arts and Sciences, University of Saba Region, Mareb, Yemen

### \*Corresponding Author:-

### Abstract:-

Our propose in this paper is to introduce the new classes for separation axioms in topo logical spaces by using  $\beta\omega$ -open sets and  $G_{\beta\omega}$ -open sets, called  $\beta\omega$ -separation axioms and  $G_{\beta\omega}$ -separation axioms. Furthermore, we introduce the stronger form of connected spaces.

Keywords:-Open set; Generalized closed set; Connectedness.

AMS classification: Primary 54A05, 54A10, 54C10

## **1 INTRODUCTION**

In 1970 Levine, [7], introduced the notion of a generalized closed set. A subset A of a space X is called a generalized closed set (simply g-closed set) if  $Cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open set. The complement of a generalized closed set (simply g-open set) is called a generalized open set. In 1982 Hdeib [5] introduced the notion of a  $\omega$ -open sets. A subset A of a space X is called  $\omega$ -open set if for each  $x \in A$ , there is an open set  $U_x$  containing x such that  $U_x$ -A is a countable set. The complement of a  $\omega$ -open set is called a  $\omega$ -closed set. In 1983 the authors [1] introduced the weak form for an open set which is called a  $\beta$ -open set. A subset A of a space X is called a  $\beta$ -open set if  $A \subseteq Cl(Int(Cl(A)))$ . The complement of a  $\beta$ -open set is called a  $\beta$ -closed set. In 2005 Al-Zoubi [2] introduced the generalization property of  $\omega$ -open sets. A subset A of a space X is called generalized  $\omega$ -closed set if  $Cl_{\omega}(A) \subseteq U$  whenever  $A \subseteq U$  and U is open set. The complement of generalized  $\omega$ -closed set is called generalized  $\omega$ -open set, where  $Cl_{\omega}(A)$  is the  $\omega$ -closure set of A. In 2009 Noiri and Noorani [8] introduced the notion of  $\beta\omega$ -open set as weak form for a  $\omega$ -open sets and a  $\beta$ -open sets. A subset A of a space X is called a  $\beta\omega$ -open set if  $A \subseteq Cl(Int_{\omega}(Cl(A)))$ . The complement of a  $\beta\omega$ -open set is called a  $\beta\omega$ -closed set, where  $Int_{\omega}(A)$  is the  $\omega$ -interior set of A. In 2019 [9] we introduced the notion of  $G_{\beta\omega}$ -closed set as weak form for a  $\beta\omega$ -closed sets and a  $\beta$ -open sets. A subset A of a topological space  $(X,\tau)$  is called generalized  $\beta\omega$ -closed (simply  $G_{\beta\omega}$ -closed) set if  $Cl_{\beta\omega}(A) \subseteq U$  whenever  $A \subseteq U$  and U is open subset of  $(X,\tau)$ . The complement of  $G_{\beta\omega}$ -closed set is called generalized  $\beta\omega$ -open (simply  $G_{\beta\omega}$ -open) set, where  $Cl_{\beta\omega}(A)$  is the  $\beta\omega$ -closure set of A which defined as the intersection of all  $\beta\omega$ -closed subsets of X containing A. Similar, the  $\beta\omega$ -interior set of A is defined as the union of all  $\beta\omega$ -open subsets of X contained in A and is denoted by  $Int_{\beta\omega}(A)$ .

This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the new classes for separation axioms in topological spaces, called  $\beta\omega$ -separation axioms. Furthermore, the relationship with the other known axioms will be studied. In

90

Section 4 we introduce also the new classes for separation axioms in topological spaces, called  $G_{\beta\omega}$ -separation axioms. Furthermore, the relationship with the other known axioms will be also studied. In Section 5 we introduce the stronger form of connected spaces.

### 2 Preliminaries

For a topological space  $(X,\tau)$  and  $A \subseteq X$ , throughout this paper, we mean Cl(A) and Int(A) the closure set and the interior set of A, respectively.

A subset of topological space is called a *clopen* set if it is both open and closed set. A topological space  $(X,\tau)$  is called *0-dimensional space*, [6] if it has a base consisting clopen sets.

**Definition 2.1.** [6] A topological space  $(X,\tau)$  is called a *disconnected space* if it is the union of two nonempty subsets A and B such that  $Cl(A) \cap B = \emptyset$  and  $A \cap Cl(B) = \emptyset$ .

**Theorem 2.2.** [6] A topological space  $(X,\tau)$  is a disconnected space if and only if it is the union of two disjoint nonempty open subsets.

**Theorem 2.3.** [6] For a topological space  $(X,\tau)$  and  $A,B \subseteq X$ , if B is an open set in X then  $Cl(A)capB \subseteq Cl(A \cap B)$ .

Theorem 2.4. [7] Every closed set is a g-closed set.

**Definition 2.5.** [7] A topological space  $(X,\tau)$  is called a  $T_{1/2}$ -space if every g-closed set is closed set.

**Theorem 2.6.** [4] A topological space  $(X,\tau)$  is  $T_{1/2}$ -space if and only if every singleton set is open or closed set.

**Definition 2.7.** [6] A topological space  $(X,\tau)$  is called:

- 1.  $T_0$ -space if for two points  $x \in G = y \in X$  in X, there is open set G in X such that  $x \in G$  and  $y \in /G$ .
- 2.  $T_1$ -space if for two points  $x \in G$ ,  $y \in X$  in X, there are two open sets G and U in X such that  $x \in G$ ,  $y \in /G$ ,  $y \in U$  and  $x \in /U$ .
- 3.  $T_2$ -space or Hausdorff space if for two points  $x \in G \in X$  in X, there are two open sets G and U in X such that  $x \in G, y \in U$  and  $U \cap G = \emptyset$ .
- 4. regular space if for each closet set F in X and each  $x \in F$ , there are two open sets G and U in X such that  $F \subseteq G$ ,  $x \in U$  and  $U \cap G = \emptyset$ . A topological space  $(X, \tau)$  is called  $T_3$ -space if it is regular space and  $T_1$ -space.
- 5. Normal space if for each two disjoint closet sets F and M in X, there are two open sets G and U in X such that  $F \subseteq G$ ,  $M \subseteq U$  and  $U \cap G = \emptyset$ . A topological space  $(X,\tau)$  is called  $T_4$ -space if it is normal space and  $T_1$ -space.

**Theorem 2.8.** [6] A topological space  $(X,\tau)$  is  $T_1$ -space if and only if every singleton set is closed set.

**Theorem 2.9.** [6] A topological space  $(X,\tau)$  is regular space if and only if for each  $x \in X$  and for each open set N in X containing x, there is an open set M in X containing x such that  $Cl(M) \subseteq N$ .

**Theorem 2.10.** [5] Every open set is  $\omega$ -open set.

**Theorem 2.11.** [5] For a topological space  $(X,\tau)$ , the collection of all  $\omega$ -open sets with a set X forms a topological space.

**Theorem 2.12.** [8] The union of arbitrary of  $\beta\omega$ -open sets is  $\beta\omega$ -open set.

**Theorem 2.13.** [8] Every  $\omega$ -open set is  $\beta\omega$ -open set.

**Definition 2.14.** [6] A function  $f: (X,\tau) \to (Y,\rho)$  of a space  $(X,\tau)$  into a space  $(Y,\rho)$  is called *continuous function* if  $f^{-1}(U)$  is an open set in X for every open set U in Y.

**Definition 2.15.** A function  $f: (X,\tau) \to (Y,\rho)$  of a space  $(X,\tau)$  into a space  $(Y,\rho)$  is called:

- 1. open function [6] if f(U) is open set in Y for every open set U in X.
- 2. closed function [6] if f(U) is closed set in Y for every closed set U in X.
- 3.  $\beta\omega$ -continuous function [9] if  $f^{-1}(U)$  is a  $\beta\omega$ -open set in X for every open set U in Y.

**Theorem 2.16.** [9] Every  $\beta\omega$ -open set is  $G_{\beta\omega}$ -open set.

**Theorem 2.17.** [9] Let  $(X,\tau)$  be a topological space. If  $(X,\tau)$  is a  $T_{1/2}$ -space then every  $G_{\beta\omega}$ -closed set in X is  $\beta\omega$ -closed set in X.

#### 3 $\beta \omega$ -Separation axioms

**Definition 3.1.** A topological space  $(X, \tau)$  is called:

- 1.  $\beta_{\omega}^2$ -space if for two points  $x \in 0$ ,  $y \in X$  in X, there are two  $\beta\omega$ -open sets G and U in X such that  $x \in G$ ,  $y \in U$  and  $U \cap G = \emptyset$ .
- 2.  $\beta \omega$ -regular space if for each closet set F in X and each  $x \in F$ , there are two  $\beta \omega$ -open sets G and U in X such that  $F \subseteq G, x \in U$  and  $U \cap G = \emptyset$ . A topological space  $(X, \tau)$  is called  $\beta_{\omega}^{3}$ -space if it is  $\beta \omega$ -regular space and  $T_{1}$ -space.
- 3.  $\beta\omega$ -normal space if for each two disjoint closet sets F and M in X, there are two  $\beta\omega$ -open sets G and U in X such that  $F \subseteq G, M \subseteq U$  and  $U \cap G = \emptyset$ . A topological space  $(X, \tau)$  is called  $\beta_{\omega}^{4}$ -space if it is  $\beta\omega$ -normal space and  $T_{1}$ -space.

The proof of the following theorem, Theorem (3.3) and Theorem (3.4) follow from the fact that open sets are  $\beta\omega$ -open sets.

**Theorem 3.2.** Every  $T_2$ -space is  $a\beta_{\omega}^2$ -space.

**Theorem 3.3.** Every regular space is a  $\beta\omega$ -regular space.

**Theorem 3.4.** Every normal space is a  $\beta\omega$ -normal space. The converse of the Theorems (3.2), (3.3) and (3.4) need not be true.

**Example 3.5.** Let  $X = \{1,2,3\}$ . The indiscrete topological space  $(X,T_I)$ , where  $T_I = \{\emptyset, X\}$ , is  $\beta_{\omega}^2$ -space,  $\beta\omega$ -regular space and  $\beta\omega$ -normal space, since all subsets of countable topological space are  $\beta\omega$ -open sets, but it is not  $T_2$ -space, regular space or normal space.

**Theorem 3.6.** Every  $\beta_{\omega}{}^{3}$ -space is a  $\beta_{\omega}{}^{2}$ -space.

**Proof.** Let  $(X,\tau)$  be a  $\beta_{\omega}^{3}$ -space and  $x = y \in X$  be any points in X. Since X is a  $T_1$ -space then by Theorem (2.8),  $\{x\}$  is a closed set in X and  $y \neq \{x\}$ . Since X is a  $\beta\omega$ -regular space then there are two  $\beta\omega$ -open sets G and U in X such that  $x \in \{x\} \subseteq G, y \in U$  and  $U \cap G = \emptyset$ . Hence X is a  $\beta_{\omega}^{2}$ -space.

**Theorem 3.7.** Every  $\beta_{\omega}^{4}$ -space is a  $\beta_{\omega}^{3}$ -space.

*Proof.* Let  $(X,\tau)$  be a  $\beta_{\omega}^{4}$ -space. Let F be any closed set in X and  $x \in F$  be any points in X. Since X is a  $T_1$ -space then by Theorem (2.8),  $\{x\}$  is a closed set in X and  $F \cap \{x\} = \emptyset$ . Since X is a  $\beta\omega$ -normal space then there are two  $\beta\omega$ -open sets G and U in X such that  $x \in \{x\} \subseteq G$ ,  $F \subseteq U$  and  $U \cap G = \emptyset$ . Hence X is a  $\beta_{\omega}^{3}$ -space.  $\Box$  We have the following relation.



**Theorem 3.8.** A topological space  $(X,\tau)$  is a  $\beta_{\omega}^2$ -space if and only if for each  $x \in X$  and for  $y \in x \in X$ , there is a  $\beta \omega$ -open set *M* in *X* containing *x* such that  $y \in Cl_{\beta\omega}(M)$ .

**Proof.** Suppose that  $(X, \tau)$  is  $\beta_{\omega}^2$ -space. Let  $x \in X$  be any point in X and  $y \in x$  be any point in X. Then there are two  $\beta\omega$ -open sets G and U in X such that  $x \in G$ ,  $y \in U$  and  $U \cap G = \emptyset$ . Take M = G is a  $\beta\omega$ -open set in X containing x and so  $v \not\in M \subseteq Cl_{\beta\omega}(M)$ .

Conversely, Let  $x = y \in X$  be any points in X. and By the hypothesis, there is a  $\beta \omega$ -open set M in X containing x such that  $y \in Cl_{\beta\omega}(M)$ . Then  $X - Cl_{\beta\omega}(M)$  is a  $\beta\omega$ -open set M in X containing y and  $M \cap [X - Cl_{\beta\omega}(M)] = \emptyset$ . Then (  $(X, \tau)$  is  $\beta_{\omega}^2$ -space.

**Theorem 3.9.** A topological space  $(X,\tau)$  is a  $\beta\omega$ -regular space if and only if for each  $x \in X$  and for each open set N in X containing x, there is a  $\beta\omega$ -open set M in X containing x such that  $Cl_{\beta\omega}(M) \subseteq N$ .

**Proof.** Suppose that  $(X,\tau)$  is  $\beta\omega$ -regular space. Let  $x \in X$  be any point in X and N be any open set in X containing x. Then X - N is a closed set in X and  $x \not\in X - N$ . Since  $(X, \tau)$  is  $\beta \omega$ -regular space then there are two  $\beta \omega$ -open sets G and U in X such that  $X - N \subseteq G$ ,  $x \in U$  and  $U \cap G = \emptyset$ . Take M = U is a  $\beta \omega$ -open set in X containing x. Then  $M = U \subseteq X - G$ , this implies,

$$Cl_{\beta\omega}(M) \subseteq Cl_{\beta\omega}(X-G) = X - G \subseteq N.$$

Conversely, Let F be any closed set in X and  $x \in F$ . Then  $x \in X - F$  and X - F is an open set in X containing x. By the hypothesis, there is a  $\beta\omega$ -open set M in X containing x such that  $Cl_{\beta\omega}(M) \subseteq X - F$ . Then  $F \subseteq X - Cl_{\beta\omega}(M)$  and  $X - Cl_{\beta\omega}(M)$  $Cl_{\beta\omega}(M)$  is a  $\beta\omega$ -open set in X. Since M is a  $\beta\omega$ -open set in X containing x and  $M \cap [X - Cl_{\beta\omega}(M)] = \emptyset$ , then  $(X,\tau)$  is  $\beta\omega$ -regular space. 

**Theorem 3.10.** A topological space  $(X,\tau)$  is  $\beta\omega$ -normal space if and only if for each closed set F in X and for each open set G in X containing F, there is a  $\beta\omega$ -open set V in X containing F such that  $Cl_{\beta\omega}(V) \subseteq G$ .

**Proof.** Suppose that  $(X,\tau)$  is  $\beta\omega$ -normal space. Let F be any closed set in X and G be any open set in X containing F. Then X - G is a closed set in X and  $F \cap (X - G) = \emptyset$ . Since  $(X, \tau)$  is  $\beta \omega$ -normal space then there are two  $\beta \omega$ -open sets H and U in X such that  $X - G \subseteq U$ ,  $F \subseteq H$  and  $U \cap H = \emptyset$ . Take V = H is a  $\beta \omega$ -open set in X containing F. Then  $V = H \subseteq X - U$ , this implies,

$$Cl_{\beta\omega}(V) \subseteq Cl_{\beta\omega}(X-U) = X-U \subseteq G.$$

Conversely, Let F and M be any two closed sets in X such that  $F \cap M = \emptyset$ . Then  $M \subseteq X - F$  and X - F is an open set in X containing closed set M. By the hypothesis, there is a  $\beta\omega$ -open set V in X containing M such that  $Cl_{\beta\omega}(V) \subseteq X - F$ . Then  $F \subseteq X - Cl_{\beta\omega}(V)$  and  $X - Cl_{\beta\omega}(V)$  is a  $\beta\omega$ -open set in X. Since V is a  $\beta\omega$ -open set in X containing x and  $V \cap [X - Cl_{\beta\omega}(V)]$ )] =  $\emptyset$ , then  $(X,\tau)$  is  $\beta\omega$ -normal space.

**Theorem 3.11.** If a function  $f: (X,\tau) \to (Y,\rho)$  is  $\beta \omega$ -continuous injection and Y is a  $T_2$ -space then X is a  $\beta_{\omega}^2$ -space. **Proof.** Let Y be a  $T_2$ -space and  $x \in y \in X$  be any points in X. Since f is injection then  $f(x) \in f(y) \in Y$ . Then there are two open sets G and U in Y such that  $f(x) \in G$ ,  $f(y) \in U$  and  $U \cap G = \emptyset$ . Then  $x \in f^{-1}(G)$ ,  $y \in f^{-1}(U)$  and  $f^{-1}(G) \cap f^{-1}(I) = f^{-1}(G \cap I) = f^{-1}(G) = 0$ 

n sets in Y and f is a 
$$\beta\omega$$
-continuous then  $f^{-1}(U)$  and  $f^{-1}(G)$  are  $\beta\omega$ -open sets in

Since G and U are open n X. Hence X is a  $J^{1}(U)$ f f (G) are  $\beta \omega$ -op  $\beta_{\omega}^2$ -space.

A subset of topological space is called a  $\beta\omega$ -clopen set if it is both  $\beta\omega$ -open and  $\beta\omega$ -closed set. sets.

**Definition 3.12.** A function  $f: (X,\tau) \to (Y,\rho)$  of a topological space  $(X,\tau)$  into a space  $(Y,\rho)$  is called *slightly*  $\beta\omega$ -continuous function if  $f^{-1}(U)$  is a  $\beta \omega$ -clopen set in X for every clopen set U in Y.

**Theorem 3.13.** Let  $f: (X,\tau) \to (Y,\rho)$  be a slightly  $\beta \omega$ -continuous injection function and Y be 0-dimensional. If Y is a  $T_2$ -space then X is a  $\beta_{\omega}^2$ -space.

**Proof.** Let Y be a  $T_2$ -space and  $x \in y \in X$  be any points in X. Since f is injection then  $f(x) \in f(y) \in Y$ . Then there are two open sets G and U in Y such that  $f(x) \in G$ ,  $f(y) \in U$  and  $U \cap G = \emptyset$ . Since Y is 0-dimensional space there are two clopen sets  $G_1$  and  $U_1$  in Y such that

 $f(x) \subseteq G_1 \subseteq G$ and  $f(y) \subseteq U_1 \subseteq U$ . Then  $x \subseteq f^{-1}(G_1) \subseteq f^{-1}(G)$  and  $y \subseteq f^{-1}(U_1) \subseteq f^{-1}(U).$ and  $f^{-1}(G_1) \cap f^{-1}(U_1) \subseteq f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset$ . Since  $G_1$  and  $U_1$  are clopen sets in Y and f is a slightly  $\beta\omega$ -continuous then  $f^{-1}(U)$  and  $f^{-1}(G)$  are  $\beta\omega$ -open sets in X. Hence X is  $a\beta_{\omega}^2$ —space.  $\Box$ 

**Theorem 3.14.** Let  $f: (X,\tau) \to (Y,\rho)$  be  $\beta \omega$ -continuous injection function. If f is an open (or closed) function and Y is a regular space then X is a  $\beta \omega$ -regular space.

**Proof.** 1. Firstly suppose f is an open function. Let  $x \in X$  be any point in X and U be any open set containing x. Then f(x) $\in f(U)$  and f(U) is an open set in Y. Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing f(x) such that  $Cl(M) \subseteq f(U)$ . Since f is a  $\beta \omega$ -continuous then  $V = f^{-1}(M)$  is a  $\beta \omega$ -open set in X containing x. Since f is injection then

$$f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.$$

Then

$$Cl_{\beta\omega}(V) = Cl_{\beta\omega}[f^{-1}(M)] \subseteq f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.$$

Hence by Theorem (3.9), X is a  $\beta \omega$ -regular space.

2. Secondly suppose f is a closed function. Let F be any closed set in X and  $x \in F$ . Then  $f(x) \in f(F)$  and f(F) is a closed set in Y. Since Y is a regular space then there are two open sets G and U in Y such that  $f(F) \subseteq G$ ,  $f(x) \in U$  and  $U \cap G =$ Ø. Since f is injection then  $F \subseteq f^{-1}(G)$ ,  $x \not\in f^{-1}(U)$  and

$$f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$$

Since f is a  $\beta\omega$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(U)$  are  $\beta\omega$ -open in X. Hence X is a  $\beta\omega$ -regular space.

**Theorem 3.15.** Let  $f: (X,\tau) \to (Y,\rho)$  be slightly  $\beta \omega$ -continuous injection and Y is 0-dimensional space. If f is an open (or closed) function then X is a  $\beta\omega$ -regular space.

**Proof.** 1. Firstly suppose f is an open function. Let  $x \in X$  be any point in X and U be any open set containing x. Then f(x) $\in f(U)$  and f(U) is an open set in Y. Since Y is a 0-dimensional space then there is a clopen set V in Y such that  $f(x) \in V$  $\subseteq f(U)$ . Since f is injection then  $x \in f^{-1}(V) \subseteq U$ . Since f is a  $\beta \omega$ -continuous then  $f^{-1}(V)$  is a  $\beta \omega$ -clopen set in X containing x. Hence

$$Cl_{\beta\omega}(f^{-1}(V)) = f^{-1}(V) \subseteq U.$$

Hence by Theorem (3.9), X is a  $\beta\omega$ -regular space.

2. Secondly suppose f is a closed function. Let F be any closed set in X and  $x \in F$ . Then  $f(x) \in f(F)$  and f(F) is a closed set in Y. Then  $f(x) \in Y - f(F)$  and Y - f(F) is an open set in Y. Since Y is a 0-dimensional space then there is a clopen set V in Y such that  $f(x) \in V \subseteq Y - f(F)$ . Since f is injection then

 $x \in f^{-1}(V) \subseteq f^{-1}[Y - f(F)] \subseteq X - F.$ 

Since f is a slightly  $\beta\omega$ -continuous then  $f^{-1}(V)$  is a  $\beta\omega$ -clopen set in X containing x and

 $X - f^{-1}(V)$  is a  $\beta \omega$ -clopen set in X such that  $F \subseteq X - f^{-1}(V)$  Hence X is a  $\beta \omega$ -regular space. 

**Theorem 3.16.** Let  $f: (X,\tau) \to (Y,\rho)$  be  $\beta \omega$ -continuous injection function. If f is closed function and Y is a normal space then X is a  $\beta \omega$ -normal space.

**Proof.** Suppose F and H are any two closed sets in X such that  $F \cap H = \emptyset$ . since Since f is injection and closed function then f(F) and f(H) are closed sets in Y and

 $f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset.$ 

Since Y is a normal space then there are two open sets G and U in Y such that  $f(F) \subseteq G$ ,  $f(H) \subseteq U$  and  $U \cap G$ =  $\emptyset$ . Since f is injection then  $F \subseteq f^{-1}(G)$ ,  $H \subseteq f^{-1}(U)$  and

 $f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$ 

Since f is a  $\beta\omega$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(U)$  are  $\beta\omega$ -open in X. Hence X is a  $\beta\omega$ -normal space. 

**Theorem 3.17.** Let  $f: (X,\tau) \to (Y,\rho)$  be slightly  $\beta\omega$ -continuous injection and Y is 0 dimensional space. If f is a closed function and Y is a normal space then X is a  $\beta \omega$ -normal space.

**Proof.** Suppose F and H are any two closed sets in X such that  $F \cap H = \emptyset$ . Since f is injection and closed function then f(F) and f(H) are closed sets in Y and

$$f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset.$$

Since Y is a normal space then there are two open sets G and U in Y such that  $f(F) \subseteq G$ ,  $f(H) \subseteq U$  and  $U \cap G = \emptyset$ . Since Y is a 0-dimensional space then for every  $g \in f(F)$  and  $u \in f(H)$  there are clopen sets  $U_u$  and  $G_g$  in Y such that G.

$$u \in U_u \subseteq U$$
 and  $g \in G_g \subseteq$ 

Then  $f(H) \subseteq \bigcup \{U_u : u \in f(H) \text{ and } U_u \text{ is a clopen set in } Y \} \subseteq U$ and  $f(F) \subseteq \bigcup \{G_g : g \in f(F) \text{ and } G_g \text{ is a clopen set in } Y\} \subseteq G.$ This implies,  $H \subseteq \bigcup \{ f^{-1}(U_u) : u \in f(H) \text{ and } U_u \text{ is a clopen set in } Y \} \subseteq f^{-1}(U)$ 

and

 $F \subseteq \bigcup \{f^{-1}(G_g) : g \in f(F) \text{ and } G_g \text{ is a clopen set in } Y \} \subseteq f^{-1}(G).$ Since f is a slightly  $\beta\omega$ -continuous then  $f^{-1}(U_u)$  and  $f^{-1}(G_g)$  are  $\beta\omega$ -open in X for all  $g \in f(F)$  and  $u \in f(H)$ . So that  $M = \bigcup \{ f^{-1}(U_u) : u \in f(H) \}$  and  $N = \bigcup \{ f^{-1}(G_g) : g \in f(F) \}$ 

are  $\beta \omega$ -open in X and  $M \cap N \subseteq f^{-1}(U) \cap f^{-1}(G) \subseteq f^{-1}(U \cap G) = f^{-1}(\emptyset) = \emptyset.$ Hence X is a  $\beta\omega$ -normal space.

## 4 $G_{\beta\omega}$ -Separation axioms

**Definition 4.1.** A topological space  $(X,\tau)$  is called:

- 1.  $G^{2}_{\beta\omega}$ -space if for two points  $x \in G$ ,  $y \in X$  in X, there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $x \in G$ ,  $y \in U$  and U  $\cap G = \emptyset$ .
- 2.  $G_{\beta\omega}$ -regular space if for each closet set F in X and each  $x \in F$ , there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $F \subseteq G, x \in U$  and  $U \cap G = \emptyset$ . A topological space  $(X, \tau)$  is called  $G^{3}_{\beta\omega}$ -space if it is  $G_{\beta\omega}$ -regular space and  $T_1$ -space.
- 3.  $G_{\beta\omega}$ -normal space if for each two disjoint closet sets F and M in X, there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $F \subseteq G$ ,  $M \subseteq U$  and  $U \cap G = \emptyset$ . A topological space  $(X,\tau)$  is called  $G^4{}_{\beta\omega}$ -space if it is  $G_{\beta\omega}$ -normal space and  $T_1$ -space.

It is clear that every  $\beta_{\omega}^2$ -space is a  $G_{\beta\omega}^2$ -space, every  $\beta\omega$ -regular space is a  $G_{\beta\omega}$ -regular space and every  $\beta\omega$ -normal space is a  $G_{\beta\omega}$ -normal space.

**Theorem 4.2.** Every  $G^{3}_{\beta\omega}$ -space is a  $G^{2}_{\beta\omega}$ -space. *Proof.* Similar for Theorem (3.6).

**Theorem 4.3.** Every  $G^4{}_{\beta\omega}$ -space is a  $G^3{}_{\beta\omega}$ -space. **Proof.** Similar for Theorem (3.7).

**Theorem 4.4.** Let  $(X,\tau)$  be a  $T_{1/2}$ -space. If X is a  $G^2{}_{\beta\omega}$ -space then X is a  $\beta_{\omega}{}^2$ -space. **Proof.** For two points  $x = y \in X$  in X, since X is a  $G^2{}_{\beta\omega}$ -space, there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $x \in G$ ,  $y \in U$  and  $U \cap G = \emptyset$ . Since X is a  $T_{1/2}$ -space, then by Theorem (2.17), G and U are  $\beta\omega$ -open sets in X. Hence X is a  $\beta^2_{\omega}$ -space.  $\Box$ 

**Theorem 4.5.** Let  $(X,\tau)$  be a  $T_{1/2}$ -space. If X is a  $G_{\beta\omega}$ -regular space then X is a  $\beta\omega$ -regular space **Proof.** For each closet set F in X and each  $x \in F$ , since X is a  $G_{\beta\omega}$ -regular space, there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $F \subseteq G$ ,  $x \in U$  and  $U \cap G = \emptyset$ . Since X is a  $T_{1/2}$ -space, then by Theorem (2.17), G and U are  $\beta\omega$ -open sets in X. Hence X is a  $\beta\omega$ -regular space.  $\Box$ 

**Corollary 4.6.** Every  $G^{3}_{\beta\omega}$ -space is  $a\beta^{3}_{\omega}$ -space. **Proof**. Use above theorem, since every  $T_{1}$ -space is  $T_{1/2}$ -space.

**Theorem 4.7.** Let  $(X,\tau)$  be a  $T_{1/2}$ -space. If X is a  $G_{\beta\omega}$ -normal space then X is a  $\beta\omega$ -normal space **Proof.** For each two disjoint closet sets F and M in X, since X is a  $G_{\beta\omega}$ -normal space, there are two  $G_{\beta\omega}$ -open sets G and U in X such that  $F \subseteq G$ ,  $M \subseteq U$  and  $U \cap G = \emptyset$ . Since X is a  $T_{1/2}$ -space then by Theorem (2.17), G and U are  $\beta\omega$ -open sets in X. Hence X is a  $\beta\omega$ -normal space.

**Corollary 4.8.** Every  $G^4{}_{\beta\omega}$ -space is a  $\beta_{\omega}{}^4$ -space. *Proof.* Use above theorem, since every  $T_1$ -space is  $T_{1/2}$ -space. We have the following relation.



**Theorem 4.9.** A topological space  $(X,\tau)$  is  $G^2_{\beta\omega}$ -space if and only if for each  $x \in X$  and for  $y \in x \in X$ , there is a  $G_{\beta\omega}$ -open set M in X containing x such that  $y \in Cl_{\beta\omega}(M)$ . **Proof.** Similar for Theorem (3.8).

**Theorem 4.10.** A topological space  $(X,\tau)$  is  $G_{\beta\omega}$ -regular space if and only if for each  $x \in X$  and for each open set N in X containing x, there is a  $G_{\beta\omega}$ -open set M in X containing x such that  $Cl_{\beta\omega}(M) \subseteq N$ . **Proof.** Similar for Theorem (3.9).

**Theorem 4.11.** A topological space  $(X,\tau)$  is  $G_{\beta\omega}$ -normal space if and only if for each closed set F in X and for each open set G in X containing F, there is a  $G_{\beta\omega}$ -open set V in X containing F such that  $Cl_{\beta\omega}(V) \subseteq G$ . **Proof.** Similar for Theorem (3.10).

**Theorem 4.12.** If a function  $f: (X,\tau) \to (Y,\rho)$  is  $G_{\beta\omega}$ -continuous injection and Y is a  $T_2$ -space then X is a  $G^2_{\beta\omega}$ -space. **Proof.** Let Y be a  $T_2$ -space and  $x \in \{0\} \in X$  be any points in X. Since f is injection then  $f(x) \in [f(y)] \in Y$ . Then there are two open sets G and U in Y such that  $f(x) \in G$ ,  $f(y) \in U$  and  $U \cap G = \emptyset$ . Then  $x \in f^{-1}(G)$ ,  $y \in f^{-1}(U)$  and

 $f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$ 

Since G and U are open sets in Y and f is a  $G_{\beta\omega}$ -continuous then  $f^{-1}(U)$  and  $f^{-1}(G)$  are  $G_{\beta\omega}$ -open sets in X. Hence X is a  $G^2_{\beta\omega}$ -space.  $\Box$ 

**Theorem 4.13.** Let  $f: (X,\tau) \to (Y,\rho)$  be  $G_{\beta\omega}$ -continuous injection function. If f is an open (or closed) function and Y is a regular space then X is a  $G_{\beta\omega}$ -regular space.

 $\square$ 

*Proof.* 1. Firstly suppose f is an open function. Let  $x \in X$  be any point in X and U be any open set containing x. Then  $f(x) \in f(U)$  and f(U) is an open set in Y. Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing f(x) such that  $Cl(M) \subseteq f(U)$ . Since f is a  $G_{\beta\omega}$ -continuous then  $V = f^{-1}(M)$  is a  $G_{\beta\omega}$ -open set in X containing x. Since f is injection then

$$f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.$$

Hence

 $Cl_{\beta\omega}(V) = Cl_{\beta\omega}[f^{-1}(M)] \subseteq f^{-1}[Cl(M)] \subseteq f^{-1}[f(U)] \subseteq U.$ 

Then by Theorem (4.10), *X* is a  $G_{\beta\omega}$ -regular space.

2. Secondly suppose f is a closed function. Let F be any closed set in X and  $x \in F$ . Then  $f(x) \in f(F)$  and f(F) is a closed set in Y. Since Y is a regular space then there are two open sets G and U in Y such that  $f(F) \subseteq G$ ,  $f(x) \in U$  and  $U \cap G = \emptyset$ . Since f is injection then  $F \subseteq f^{-1}(G)$ ,  $x \in f^{-1}(U)$  and

 $f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset.$ 

Since f is a  $G_{\beta\omega}$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(U)$  are  $G_{\beta\omega}$ -open in X. Hence X is a  $G_{\beta\omega}$ -regular space.

**Theorem 4.14.** Let  $f: (X,\tau) \to (Y,\rho)$  be  $G_{\beta\omega}$ -continuous injection function. If f is closed function and Y is a normal space then X is a  $G_{\beta\omega}$ -normal space.

**Proof.** Suppose F and H are any two closed sets in X such that  $F \cap H = \emptyset$ . since Since f is injection and closed function then f(F) and f(H) are closed sets in Y and

$$f(H) \cap f(F) = f(H \cap F) = f(\emptyset) = \emptyset.$$

Since Y is a normal space then there are two open sets G and U in Y such that  $f(F) \subseteq G$ ,  $f(H) \subseteq U$  and  $U \cap G = \emptyset$ . Since f is injection then  $F \subseteq f^{-1}(G)$ ,  $H \subseteq f^{-1}(U)$  and

$$f^{-1}(G) \cap f^{-1}(U) = f^{-1}(G \cap U) = f^{-1}(\emptyset) = \emptyset$$

Since f is a  $G_{\beta\omega}$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(U)$  are  $G_{\beta\omega}$ -open in X. Hence X is a  $G_{\beta\omega}$ -normal space.  $\Box$ 

#### 5 $\beta\omega$ -Connectedness property

**Definition 5.1.** Let  $(X,\tau)$  be a topological space and A,B be two nonempty subsets of X. The sets A and B are called a  $\beta\omega$ -separated sets if  $Cl_{\beta\omega}(A) \cap B = \emptyset$  and  $A \cap Cl_{\beta\omega}(B) = \emptyset$ .

**Remark 5.2.** Let  $(X, \tau)$  be a topological space. Then

1. Any  $\beta \omega$ -separated sets are disjoint sets, since  $A \cap B \subseteq A \cap Cl_{\beta \omega}(B) = \emptyset$ .

2. Any two nonempty  $\beta\omega$ -closed sets in X are  $\beta\omega$ -separated if they are disjoint sets.

**Definition 5.3.** A topological space  $(X,\tau)$  is called a  $\beta\omega$ -disconnected space if it is the union of two  $\beta\omega$ -separated sets. Otherwise A  $(X,\tau)$  is called a  $\beta\omega$ -connected space.

**Example 5.4.** Any a countable topological space  $(X,\tau)$  is a  $\beta\omega$ -disconnected space if X has more that one point. The proof of the following theorem is clear since  $Cl_{\beta\omega}(A) \subset Cl(A)$ .

**Theorem 5.5.** Every disconnected space is a  $\beta\omega$ -disconnected space. The converse of the above theorem need not be true.

**Example 5.6.** In the topological space (*X*,*T*), where  $T = \{\emptyset, X\}$  and  $X = \{a, b\}$ , is  $\beta \omega$ -disconnected space but it is a connected space.

**Theorem 5.7.** A topological space  $(X,\tau)$  is a  $\beta\omega$ -disconnected space if and only if it is the union of two disjoint nonempty  $\beta\omega$ -open sets.

**Proof.** Suppose that  $(X,\tau)$  is a  $\beta\omega$ -disconnected space. Then X is the union of two  $\beta\omega$ -separated sets, that is, there are two nonempty subsets A and B of X such that

 $Cl_{\beta\omega}(A) \cap B = \emptyset, A \cap Cl_{\beta\omega}(B) = \emptyset \text{ and } A \cup B = X.$ 

Take  $G = X - Cl_{\beta\omega}(A)$  and  $H = X - Cl_{\beta\omega}(B)$ . Then G and H are  $\beta\omega$ -open sets. Since  $B \in \emptyset$  and  $Cl_{\beta\omega}(A) \cap B = \emptyset$ , then  $B \subseteq X - Cl_{\beta\omega}(A)$ , that is,  $G = X - Cl_{\beta\omega}(A) \in \emptyset$ . Similar  $H \in \emptyset$ . Since  $Cl_{\beta\omega}(A) \cap B = \emptyset$ ,  $A \cap Cl_{\beta\omega}(B) = \emptyset$  and  $A \cup B = X$ , then  $X - (G \cap H) = (X - G) \cup (X - H) = [Cl_{\beta\omega}(A)] \cup [Cl_{\beta\omega}(B)] = X$ .

#### That is, $G \cap H = \emptyset$ .

Conversely, suppose that  $(X,\tau)$  is the union of two disjoint nonempty  $\beta\omega$ -open subsets, say G and H. Take A = X-G and B = X - H. Then A and B are  $\beta\omega$ -closed sets, that is,  $Cl_{\beta\omega}(A) = A$  and  $Cl_{\beta\omega}(B) = B$ . Since  $H = \emptyset$  and  $H \cap G = \emptyset$ , then  $H \subseteq X - G = A$ , that is,  $A = \emptyset$ . Similar  $B = \emptyset$ . Since  $G \cap H = \emptyset$  and  $G \cup H = X$ , then

 $Cl_{\beta\omega}(A) \cap B = A \cap B = (X - G) \cap (X - H) = X - (G \cup H) = X - X = \emptyset.$ 

Similar,  $A \cap Cl_{\beta\omega}(B) = \emptyset$ . Note that

 $A \cup B = (X - G) \cup (X - H) = X - (G \cap H) = X - \emptyset = X.$ 

That is,  $(X, \tau)$  is a  $\beta \omega$ -disconnected space.

**Corollary 5.8.** A topological space  $(X,\tau)$  is a  $\beta\omega$ -disconnected space if and only if it is the union of two disjoint nonempty  $\beta\omega$ -closed subsets.

Volume-2 | Issue-1 | May, 2016

 $\square$ 

**Proof.** Suppose that  $(X,\tau)$  is a  $\beta\omega$ -disconnected space. Then by Theorem (5.7),  $(X,\tau)$  is the union of two disjoint nonempty  $\beta\omega$ -open subsets, say G and H. Then X-G and X-H are  $\beta\omega$ -closed subsets. Since  $G = \emptyset$ ,  $H = \emptyset$  and  $X = G \cup H$  then  $X - G = \emptyset$ ,  $X - H = \emptyset$  and  $X = G \cup H$  then  $X - G = \emptyset$ ,  $X - H = \emptyset$  and

$$(X-G) \cap (X-H) = X - (G \cup H) = X - X = \emptyset.$$

Since  $G \cap H = \emptyset$  then

$$(X-G) \cup (X-H) = X - (G \cap H) = X - \emptyset = X$$

Hence X is the union of two disjoint nonempty  $\beta \omega$ -closed subsets.

Conversely, suppose that  $(X,\tau)$  is the union of two disjoint nonempty  $\beta\omega$ -closed subsets, say G and H. Take A = X - G and B = X - H. Then A and B are  $\beta\omega$ -open sets. Since  $H = \emptyset$  and  $H \cap G = \emptyset$ , then  $H \subseteq X - G = A$ , that is,  $A \in \emptyset$ . Similar  $B = 6 \emptyset$ . Since  $G \cap H = \emptyset$  and  $G \cup H = X$ , then

$$Cl_{\beta\omega}(A) \cap B = A \cap B = (X - G) \cap (X - H) = X - (G \cup H) = X - X = \emptyset.$$

Similar,  $A \cap Cl_{\beta\omega}(B) = \emptyset$ . Note that

$$A \cup B = (X - G) \cup (X - H) = X - (G \cap H) = X - \emptyset = X.$$
  
Then by Theorem (5.7),  $(X,\tau)$  is a  $\beta\omega$ -disconnected space.

**Theorem 5.9.** A topological space  $(X,\tau)$  is a  $\beta\omega$ -connected space if there is no nonempty proper subset of X which is both  $\beta\omega$ -open and  $\beta\omega$ -closed.

**Proof.** Suppose that  $(X,\tau)$  is a  $\beta\omega$ -connected space. Let A be a nonempty proper subset of X which is both  $\beta\omega$ -open and  $\beta\omega$ -closed. Then X - A is a nonempty proper subset of X which is both  $\beta\omega$ -open and  $\beta\omega$ -closed. Since  $A \cup (X - A) = X$ , then by Theorem (5.7), X is a  $\beta\omega$ -disconnected space and this a contradiction. So there is no nonempty proper subset of X which is both  $\beta\omega$ -open and  $\beta\omega$ -closed set.

Conversely, suppose that  $(X,\tau)$  is a  $\beta\omega$ -disconnected space. Then by Theorem (5.7), X is the union of two disjoint nonempty  $\beta\omega$ -open subsets, say A and B. Then X - B = A is  $\beta\omega$ -closed subset of X. Since  $B = \emptyset$  and  $X = A \cup B$  then A is a nonempty proper subset of X which is both  $\beta\omega$ -open and  $\beta\omega$ -closed. This is a contradiction with the hypothesis. Hence  $(X,\tau)$  is a  $\beta\omega$ -connected space.  $\Box$ 

**Theorem 5.10.** Let  $f: (X,\tau) \to (Y,\rho)$  be a  $\beta\omega$ -continuous surjection function. If X is a  $\beta\omega$ -connected space then Y is connected space.

**Proof.** Suppose that Y is a disconnected space. Then by Theorem (5.7), Y is the union of two disjoint nonempty open subsets, say G and H. Since f is a  $\beta\omega$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(H)$  are  $\beta\omega$ -open sets in X. Since  $G = \emptyset$ ,  $H = 6 \emptyset$  and f is a surjection then  $f^{-1}(H) = \emptyset$  and  $f^{-1}(G) = \emptyset$ . Since  $G \cap H = \emptyset$  and  $G \cup H = X$  then  $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$ 

and

$$f^{-1}(G) \cup f^{-1}(H) = f^{-1}(G \cup H) = f^{-1}(Y) = X.$$

Hence X is the union of two disjoint nonempty  $\beta\omega$ -open subsets, that is, X is a  $\beta\omega$ -disconnected space. This is a a contradiction. Hence Y is a connected space.  $\Box$ 

**Theorem 5.11.** Let  $f: (X,\tau) \to (Y,\rho)$  be a slightly  $\beta\omega$ -continuous surjection function. If X is a  $\beta\omega$ -connected space then Y is connected space.

**Proof.** Suppose that Y is a disconnected space. Then by Theorem (2.2), Y is the union of two disjoint nonempty open subsets, say G and B. Then G and B are clopen sets in Y. Since f is a slightly  $\beta\omega$ -continuous then  $f^{-1}(G)$  and  $f^{-1}(H)$  are  $\beta\omega$ -open sets in X. Since  $G = \emptyset$ ,  $H = \emptyset$  and f is a surjection then  $f^{-1}(H) = 6\emptyset$  and  $f^{-1}(G) = 6\emptyset$ . Since  $G \cap H = \emptyset$  and  $G \cup H = X$  then  $f^{-1}(G) \cap f^{-1}(H) = \emptyset$  and  $f^{-1}(G) \cup f^{-1}(H) = X$ . Hence X is the union of two disjoint nonempty  $\beta\omega$ -open subsets, that is, X is a  $\beta\omega$ -disconnected space. This is a a contradiction. Hence Y is a connected space.  $\Box$ 

#### References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2]. K. Al-Zoubi, On generalized ω-closed sets, International Journal of Mathematics and Mathematical Sciences, 13 (2005), 20112021.
- [3]. C. Baker, On slightly precontinuous functions, Act. Math. Hunger, 94(2002), 45-52.
- [4]. J. Dontchev and H. Maki, On θ-generalized closed sets, Int. J. Math. Math. Sci., 22 (1999), 239-249.
- [5]. H. Z. Hdeib, w-closed mappings, Revista Colombiana de Matematicas, 16 (1982), 65-78. [6] F. Helen, 1968, Introduction to General Topology, Boston: University of Massachusetts. [7] N. Levine, Generalized closed sets in topology, Rend. Cric. Mat.Palermo, 2 (1970), 89-96.
- [6]. T. Noiri, A. Al-omari and M. Noorani, Weak forms of  $\omega$ -open sets and decompositions of continuity, European Journal of Pure and Applied Mathematics 1, (2009), 73-84.
- [7]. A. Saif and Y. Awbel, Weak forms of  $\omega$ -open sets, (Submitted).