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1 INTRODUCTION
In 1970 Levine, [7], introduced the notion of a generalized closed set. A subset A of a space X is called a generalized 
closed set (simply g−closed set) if Cl (A) ⊆U whenever A ⊆ U and U is open set. The complement of a generalized closed 
set (simply g−open set) is called a generalized open set. In 1982 Hdeib [5] introduced the notion of a ω−open sets. A 
subset A of a space X is called ω−open set if for each x ∈ A, there is an open set Ux containing x such that Ux−A is a 
countable set. The complement of a ω−open set is called a ω−closed set. In 1983 the authors [1] introduced the weak 
form for an open set which is called a β−open set. A subset A of a space X is called a β−open set if A ⊆ Cl(Int(Cl(A))). 
The complement of a β−open set is called a β−closed set. In 2005 Al-Zoubi [2] introduced the generalization prop erty of 
ω−open sets. A subset A of a space X is called generalized ω−closed set if Clω(A) ⊆ U whenever A ⊆ U and U is open 
set. The complement of generalized ω−closed set is called generalized ω−open set, where Clω(A) is the ω−closure set of 
A. In 2009 Noiri and Noorani [8] introduced the notion of βω−open set as weak form for a ω−open sets and a β−open 
sets. A subset A of a space X is called a βω−open set if A ⊆ Cl(Intω(Cl(A))). The complement of a βω−open set is called 
a βω−closed set, where Intω(A) is the ω−interior set of A. In 2019 [9] we introduced the notion of Gβω−closed set as weak 
form for a βω−closed sets and a β−open sets. A subset A of a topological space (X,τ) is called generalized βω−closed 
(simply Gβω−closed) set if Clβω(A) ⊆ U whenever A ⊆ U and U is open subset of (X,τ). The complement of Gβω−closed 
set is called generalized βω−open (simply Gβω−open) set, where Clβω (A) is the βω−closure set of A which defined as the 
intersection of all βω−closed subsets of X containing A. Similar, the βω−interior set of A is defined as the union of all 
βω−open subsets of X contained in A and is denoted by Intβω(A).
This paper is organized as follows. Section 2 is devoted to some preliminaries. In Section 3 we introduce the new classes 
for separation axioms in topological spaces, called βω−separation axioms. Furthermore, the relationship with the other 
known axioms will be studied. In
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Section 4 we introduce also the new classes for separation axioms in topological spaces, called Gβω−separation axioms. 
Furthermore, the relationship with the other known axioms will be also studied. In Section 5 we introduce the stronger 
form of connected spaces.

2 Preliminaries
For a topological space (X,τ) and A ⊆ X, throughout this paper, we mean Cl(A) and Int(A) the closure set and the interior 
set of A, respectively.
A subset of topological space is called a clopen set if it is both open and closed set. A topological space (X,τ) is called 0-
dimensional space , [6] if it has a base consisting clopen sets.

Definition 2.1. [6] A topological space (X,τ) is called a disconnected space if it is the union of two nonempty subsets A 
and B such that Cl(A) ∩ B = ∅ and A ∩ Cl(B) = ∅.

Theorem 2.2. [6] A topological space (X,τ) is a disconnected space if and only if it is the union of two disjoint nonempty 
open subsets.

Theorem 2.3. [6] For a topological space (X,τ) and A,B ⊆ X, if B is an open set in X then Cl(A)capB ⊆ Cl(A ∩ B).

Theorem 2.4. [7] Every closed set is a g−closed set.

Definition 2.5. [7] A topological space (X,τ) is called a T1/2−space if every g−closed set is closed set.

Theorem 2.6. [4] A topological space (X,τ) is T1/2−space if and only if every singleton set is open or closed set.

Definition 2.7. [6] A topological space (X,τ) is called:
1. T0−space if for two points x 6= y ∈ X in X, there is open set G in X such that x ∈ G and y ∈/ G.
2. T1−space if for two points x 6= y ∈ X in X, there are two open sets G and U in X such that x ∈ G, y ∈/ G, y ∈ U and x 

∈/ U.
3. T2−space or Hausdorff spaceif for two points x 6= y ∈ X in X, there are two open setsG and U in X such that x ∈ G, y 

∈ U and U ∩ G = ∅.
4. regular space if for each closet set F in X and each x ∈/ F, there are two open sets G and U in X such that F ⊆ G, x 

∈/ U and U ∩ G = ∅. A topological space (X,τ) is called T3−space if it is regular space and T1−space.
5. Normal space if for each two disjoint closet sets F and M in X, there are two open sets G and U in X such that F ⊆ G, 

M ⊆ U and U ∩ G = ∅. A topological space (X,τ) is called T4−space if it is normal space and T1−space.

Theorem 2.8. [6] A topological space (X,τ) is T1−space if and only if every singleton set is closed set.

Theorem 2.9. [6] A topological space (X,τ) is regular space if and only if for each x ∈ X and for each open set N in X 
containing x, there is an open set M in X containing x such that Cl(M) ⊆ N.

Theorem 2.10. [5] Every open set is ω−open set.
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Theorem 2.11. [5] For a topological space (X,τ), the collection of all ω−open sets with a set X forms a topological space.

Theorem 2.12. [8] The union of arbitrary of βω−open sets is βω−open set.

Theorem 2.13. [8] Every ω−open set is βω−open set.

Definition 2.14. [6] A function f : (X,τ) → (Y,ρ) of a space (X,τ) into a space (Y,ρ) is called continuous function if f−1(U) 
is an open set in X for every open set U in Y .

Definition 2.15. A function f : (X,τ) → (Y,ρ) of a space (X,τ) into a space (Y,ρ) is called:
1. open function [6] if f(U) is open set in Y for every open set U in X.
2. closed function [6] if f(U) is closed set in Y for every closed set U in X.
3. βω−continuous function [9] if f−1(U) is a βω−open set in X for every open set U in Y .

Theorem 2.16. [9] Every βω−open set is Gβω−open set.

Theorem 2.17. [9] Let (X,τ) be a topological space. If (X,τ) is a T1/2−space then every Gβω−closed set in X is βω−closed 
set in X.

3 βω−Separation axioms
Definition 3.1. A topological space (X,τ) is called:
1. βω

2−space if for two points x 6= y ∈ X in X, there are two βω−open sets G and U in X such that x ∈ G, y ∈ U and U ∩ 
G = ∅.

2. βω−regular space if for each closet set F in X and each x /∈ F, there are two βω−open sets G and U in X such that F 
⊆ G, x ∈ U and U ∩G = ∅. A topological space (X,τ) is called βω

3−space if it is βω−regular space and T1−space.
3. βω−normal space if for each two disjoint closet sets F and M in X, there are two βω−open sets G and U in X such that 

F ⊆ G, M ⊆ U and U ∩ G = ∅. A topological space (X,τ) is called βω
4−space if it is βω−normal space and T1−space.

The proof of the following theorem, Theorem (3.3) and Theorem (3.4) follow from the fact that open sets are βω−open 
sets.

Theorem 3.2. Every T2−space is a space.

Theorem 3.3. Every regular space is a βω−regular space. 

Theorem 3.4. Every normal space is a βω−normal space.
The converse of the Theorems (3.2), (3.3) and (3.4) need not be true.

Example 3.5. Let X = {1,2,3}. The indiscrete topological space (X,TI), where TI = {∅,X}, is βω
2−space, βω−regular space 

and βω−normal space, since all subsets of countable topological space are βω−open sets, but it is not T2−space, regular 
space or normal space.

Theorem 3.6. Every βω
3−space is a βω

2−space.
Proof. Let (X,τ) be a βω

3−space and x 6= y ∈ X be any points in X. Since X is a T1−space then by Theorem (2.8), {x} is a 
closed set in X and y /∈{x}. Since X is a βω−regular space then there are two βω−open sets G and U in X such that x 

∈{x}⊆ G, y ∈ U and U ∩G = ∅. Hence X is a space.

Theorem 3.7. Every βω
4−space is a βω

3−space.
Proof. Let (X,τ) be a βω

4−space. Let F be any closed set in X and x /∈ F be any points in X. Since X is a T1−space then by 
Theorem (2.8), {x} is a closed set in X and F ∩{x} = ∅. Since X is a βω−normal space then there are two βω−open sets 

G and U in X such that x ∈{x}⊆ G, F ⊆ U and U ∩ G = ∅. Hence X is a space. 
We have the following relation.

Figure 1:
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Theorem 3.8. A topological space (X,τ) is a βω
2−space if and only if for each x ∈ X and for y 6= x ∈ X, there is a βω−open 

set M in X containing x such that y /∈ Clβω(M).

Proof. Suppose that ( space. Let x ∈ X be any point in X and y 6= x be any point in X. Then there are two 
βω−open sets G and U in X such that x ∈ G, y ∈ U and U ∩ G = ∅. Take M = G is a βω−open set in X containing x and 
so y /∈ M ⊆ Clβω(M).

Conversely, Let x 6= y ∈ X be any points in X. and By the hypothesis, there is a βω−open set M in X containing x 
such that y /∈ Clβω(M). Then X − Clβω(M) is a βω−open set M in X containing y and M ∩ [X − Clβω(M)] = ∅. Then (

space.

Theorem 3.9. A topological space (X,τ) is a βω−regular space if and only if for each x ∈ X and for each open set N in X 
containing x, there is a βω−open set M in X containing x such that Clβω(M) ⊆ N.
Proof. Suppose that (X,τ) is βω−regular space. Let x ∈ X be any point in X and N be any open set in X containing x. Then 
X − N is a closed set in X and x /∈ X − N. Since (X,τ) is βω−regular space then there are two βω−open sets G and U in X 
such that X − N ⊆ G, x ∈ U and U ∩ G = ∅. Take M = U is a βω−open set in X containing x. Then M = U ⊆ X − G, this 
implies,

Clβω(M) ⊆ Clβω(X − G) = X − G ⊆ N.
Conversely, Let F be any closed set in X and x /∈ F. Then x ∈ X − F and X − F is an open set in X containing x. By 

the hypothesis, there is a βω−open set M in X containing x such that Clβω(M) ⊆ X − F. Then F ⊆ X − Clβω(M) and X −
Clβω(M) is a βω−open set in X. Since M is a βω−open set in X containing x and M ∩ [X − Clβω(M)] = ∅, then (X,τ) is 
βω−regular space.

Theorem 3.10. A topological space (X,τ) is βω−normal space if and only if for each closed set F in X and for each open 
set G in X containing F, there is a βω−open set V in X containing F such that Clβω(V ) ⊆ G.
Proof. Suppose that (X,τ) is βω−normal space. Let F be any closed set in X and G be any open set in X containing F. Then 
X − G is a closed set in X and F ∩ (X − G) = ∅. Since (X,τ) is βω−normal space then there are two βω−open sets H and U 
in X such that X −G ⊆ U, F ⊆ H and U ∩H = ∅. Take V = H is a βω−open set in X containing F. Then V = H ⊆ X − U, 
this implies,

Clβω(V ) ⊆ Clβω(X − U) = X − U ⊆ G.
Conversely, Let F and M be any two closed sets in X such that F ∩ M = ∅. Then M ⊆ X−F and X−F is an open set in 

X containing closed set M. By the hypothesis, there is a βω−open set V in X containing M such that Clβω(V ) ⊆ X −F. Then 
F ⊆ X −Clβω(V ) and X − Clβω(V ) is a βω−open set in X. Since V is a βω−open set in X containing x and V ∩ [X − Clβω(V 
)] = ∅, then (X,τ) is βω−normal space. 

Theorem 3.11. If a function f : (X,τ) → (Y,ρ) is βω−continuous injection and Y is a T2−space then X is a βω
2−space.

Proof. Let Y be a T2−space and x 6= y ∈ X be any points in X. Since f is injection then f(x) 6= f(y) ∈ Y . Then there are two 
open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and U ∩ G = ∅. Then x ∈ f−1(G), y ∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.
Since G and U are open sets in Y and f is a βω−continuous then f−1(U) and f−1(G) are βω−open sets in X. Hence X is a 
βω

2−space. 
A subset of topological space is called a βω−clopen set if it is both βω−open and βω−closed set. sets.

Definition 3.12. A function f : (X,τ) → (Y,ρ) of a topological space (X,τ) into a space (Y,ρ) is called slightly βω−continuous 
function if f−1(U) is a βω−clopen set in X for every clopen set U in Y .

Theorem 3.13. Let f : (X,τ) → (Y,ρ) be a slightly βω−continuous injection function and Y be 0-dimensional. If Y is a 
T2−space then X is a βω

2−space.
Proof. Let Y be a T2−space and x 6= y ∈ X be any points in X. Since f is injection then f(x) 6= f(y) ∈ Y . Then there are two 
open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and U ∩ G = ∅. Since Y is 0-dimensional space there are two clopen 
sets G1 and U1 in Y such that

f(x) ⊆ G1 ⊆ G and f(y) ⊆ U1 ⊆ U.
Then x ⊆ f−1(G1) ⊆ f−1(G) and y ⊆ f−1(U1) ⊆ f−1(U).
and f−1(G1) ∩ f−1(U1) ⊆ f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.
Since G1 and U1 are clopen sets in Y and f is a slightly βω−continuous then f−1(U) and f−1(G) are βω−open sets in X. Hence 

X is a space. 

Theorem 3.14. Let f : (X,τ) → (Y,ρ) be βω−continuous injection function. If f is an open (or closed) function and Y is a 
regular space then X is a βω−regular space.
Proof. 1. Firstly suppose f is an open function. Let x ∈ X be any point in X and U be any open set containing x. Then f(x) 
∈ f(U) and f(U) is an open set in Y . Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing 
f(x) such that Cl(M) ⊆ f(U). Since f is a βω−continuous then V = f−1(M) is a βω−open set in X containing x. Since f is 
injection then

f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U.
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Then
Clβω(V ) = Clβω[f−1(M)] ⊆ f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U.

Hence by Theorem (3.9), X is a βω−regular space.
2. Secondly suppose f is a closed function. Let F be any closed set in X and x /∈ F. Then f(x) ∈/ f(F) and f(F) is a closed 
set in Y . Since Y is a regular space then there are two open sets G and U in Y such that f(F) ⊆ G, f(x) ∈ U and U ∩ G = 
∅. Since f is injection then F ⊆ f−1(G), x /∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.
Since f is a βω−continuous then f−1(G) and f−1(U) are βω−open in X. Hence X is a βω−regular space.

Theorem 3.15. Let f : (X,τ) → (Y,ρ) be slightly βω−continuous injection and Y is 0-dimensional space. If f is an open (or 
closed) function then X is a βω−regular space.
Proof. 1. Firstly suppose f is an open function. Let x ∈ X be any point in X and U be any open set containing x. Then f(x) 
∈ f(U) and f(U) is an open set in Y . Since Y is a 0-dimensional space then there is a clopen set V in Y such that f(x) ∈ V 
⊆ f(U). Since f is injection then x ∈ f−1(V ) ⊆U. Since f is a βω−continuous then f−1(V ) is a βω−clopen set in X containing 
x. Hence

Clβω(f−1(V )) = f−1(V ) ⊆ U.
Hence by Theorem (3.9), X is a βω−regular space.

2. Secondly suppose f is a closed function. Let F be any closed set in X and x ∈/ F. Then f(x) ∈/ f(F) and f(F) is a closed 
set in Y . Then f(x) ∈ Y − f(F) and Y − f(F) is an open set in Y . Since Y is a 0-dimensional space then there is a clopen set 
V in Y such that f(x) ∈ V ⊆ Y − f(F). Since f is injection then

x ∈ f−1(V ) ⊆ f−1[Y − f(F)] ⊆ X − F.
Since f is a slightly βω−continuous then f−1(V ) is a βω−clopen set in X containing x and

X − f−1(V ) is a βω−clopen set in X such that F ⊆ X − f−1(V ) Hence X is a βω−regular space.

Theorem 3.16. Let f : (X,τ) → (Y,ρ) be βω−continuous injection function. If f is closed function and Y is a normal space 
then X is a βω−normal space.
Proof. Suppose F and H are any two closed sets in X such that F ∩H = ∅. since Since f is injection and closed function 
then f(F) and f(H) are closed sets in Y and

f(H) ∩ f(F) = f(H ∩ F) = f(∅) = ∅.
Since Y is a normal space then there are two open sets G and U in Y such that f(F) ⊆ G, f(H) ⊆ U and U ∩ G 

= ∅. Since f is injection then F ⊆ f−1(G), H ⊆ f−1(U) and
f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since f is a βω−continuous then f−1(G) and f−1(U) are βω−open in X. Hence X is a βω−normal space.

Theorem 3.17. Let f : (X,τ) → (Y,ρ) be slightly βω−continuous injection and Y is 0 dimensional space. If f is a closed 
function and Y is a normal space then X is a βω−normal space.
Proof. Suppose F and H are any two closed sets in X such that F ∩ H = ∅. Since f is injection and closed function then 
f(F) and f(H) are closed sets in Y and

f(H) ∩ f(F) = f(H ∩ F) = f(∅) = ∅.
Since Y is a normal space then there are two open sets G and U in Y such that f(F) ⊆ G, f(H) ⊆ U and U ∩ G = ∅. Since 
Y is a 0-dimensional space then for every g ∈ f(F) and u ∈ f(H) there are clopen sets Uu and Gg in Y such that

u ∈ Uu ⊆ U and g ∈ Gg ⊆ G.
Then f(H) ⊆∪{Uu : u ∈ f(H) and Uu is a clopen set in Y }⊆ U
and f(F) ⊆∪{Gg : g ∈ f(F) and Gg is a clopen set in Y }⊆ G.
This implies,
H ⊆∪{f−1(Uu) : u ∈ f(H) and Uu is a clopen set in Y }⊆ f−1(U)
and
F ⊆∪{f−1(Gg) : g ∈ f(F) and Gg is a clopen set in Y }⊆ f−1(G).
Since f is a slightly βω−continuous then f−1(Uu) and f−1(Gg) are βω−open in X for all g ∈ f(F) and u ∈ f(H). So that

M = ∪{f−1(Uu) : u ∈ f(H)} and N = ∪{f−1(Gg) : g ∈ f(F)}
are βω−open in X and
M ∩ N ⊆ f−1(U) ∩ f−1(G) ⊆ f−1(U ∩ G) = f−1(∅) = ∅.
Hence X is a βω−normal space.

4 Gβω−Separation axioms
Definition 4.1. A topological space (X,τ) is called:
1. G2

βω−space if for two points x 6= y ∈ X in X, there are two Gβω−open sets G and U in X such that x ∈ G, y ∈ U and U 
∩ G = ∅.

2. Gβω−regular space if for each closet set F in X and each x /∈ F, there are two Gβω−open sets G and U in X such that 
F ⊆ G, x ∈ U and U ∩G = ∅. A topological space (X,τ) is called G3

βω−space if it is Gβω−regular space and T1−space.
3. Gβω−normal space if for each two disjoint closet sets F and M in X, there are two Gβω−open sets G and U in X such 

that F ⊆ G, M ⊆ U and U ∩G = ∅. A topological space (X,τ) is called G4
βω−space if it is Gβω−normal space and 

T1−space.
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It is clear that every βω2−space is a G2
βω−space, every βω−regular space is a Gβω−regular space and every βω−normal 

space is a Gβω−normal space.

Theorem 4.2. Every G3
βω−space is a G2

βω−space.
Proof. Similar for Theorem (3.6).

Theorem 4.3. Every G4
βω−space is a G3

βω−space.
Proof. Similar for Theorem (3.7).

Theorem 4.4. Let (X,τ) be a T1/2−space. If X is a G2
βω−space then X is a βω2−space.

Proof. For two points x 6= y ∈ X in X, since X is a G2
βω−space, there are two Gβω−open sets G and U in X such that x ∈

G, y ∈ U and U ∩G = ∅. Since X is a T1/2−space, then by Theorem (2.17), G and U are βω−open sets in X. Hence X is a

space. 

Theorem 4.5. Let (X,τ) be a T1/2−space. If X is a Gβω−regular space then X is a βω−regular space
Proof. For each closet set F in X and each x /∈ F, since X is a Gβω−regular space, there are two Gβω−open sets G and U in 
X such that F ⊆ G, x ∈ U and U ∩ G = ∅. Since X is a T1/2−space, then by Theorem (2.17), G and U are βω−open sets in 
X. Hence X is a βω−regular space.

Corollary 4.6. Every G3
βω−space is a space.

Proof. Use above theorem, since every T1−space is T1/2−space.

Theorem 4.7. Let (X,τ) be a T1/2−space. If X is a Gβω−normal space then X is a βω−normal space
Proof. For each two disjoint closet sets F and M in X, since X is a Gβω−normal space, there are two Gβω−open sets G and 
U in X such that F ⊆ G, M ⊆ U and U ∩ G = ∅. Since X is a T1/2−space then by Theorem (2.17), G and U are βω−open 
sets in X. Hence X is a βω−normal space.

Corollary 4.8. Every G4
βω−space is a βω4−space.

Proof. Use above theorem, since every T1−space is T1/2−space.
We have the following relation.

Figure 2:

Theorem 4.9. A topological space (X,τ) is G2
βω−space if and only if for each x ∈ X and for y 6= x ∈ X, there is a Gβω−open 

set M in X containing x such that y /∈ Clβω(M).
Proof. Similar for Theorem (3.8).

Theorem 4.10. A topological space (X,τ) is Gβω−regular space if and only if for each x ∈ X and for each open set N in X 
containing x, there is a Gβω−open set M in X containing x such that Clβω(M) ⊆ N.
Proof. Similar for Theorem (3.9).

Theorem 4.11. A topological space (X,τ) is Gβω−normal space if and only if for each closed set F in X and for each open 
set G in X containing F, there is a Gβω−open set V in X containing F such that Clβω(V ) ⊆ G.
Proof. Similar for Theorem (3.10).

Theorem 4.12. If a function f : (X,τ) → (Y,ρ) is Gβω−continuous injection and Y is a T2−space then X is a G2
βω−space.

Proof. Let Y be a T2−space and x 6= y ∈ X be any points in X. Since f is injection then f(x) 6= f(y) ∈ Y . Then there are two 
open sets G and U in Y such that f(x) ∈ G, f(y) ∈ U and U ∩ G = ∅. Then x ∈ f−1(G), y ∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.
Since G and U are open sets in Y and f is a Gβω−continuous then f−1(U) and f−1(G) are Gβω−open sets in X. Hence X is a 
G2

βω−space. 

Theorem 4.13. Let f : (X,τ) → (Y,ρ) be Gβω−continuous injection function. If f is an open (or closed) function and Y is a 
regular space then X is a Gβω−regular space.
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Proof. 1. Firstly suppose f is an open function. Let x ∈ X be any point in X and U be any open set containing x. Then f(x) 
∈ f(U) and f(U) is an open set in Y . Since Y is a regular space then by Theorem(2.9), there is an open set M in Y containing 
f(x) such that Cl(M) ⊆ f(U). Since f is a Gβω−continuous then V = f−1(M) is a Gβω−open set in X containing x. Since f is 
injection then

f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U.
Hence

Clβω(V ) = Clβω[f−1(M)] ⊆ f−1[Cl(M)] ⊆ f−1[f(U)] ⊆ U.
Then by Theorem (4.10), X is a Gβω−regular space.
2. Secondly suppose f is a closed function. Let F be any closed set in X and x /∈ F. Then f(x) ∈/ f(F) and f(F) is a closed 
set in Y . Since Y is a regular space then there are two open sets G and U in Y such that f(F) ⊆ G, f(x) ∈ U and U ∩ G = 
∅. Since f is injection then F ⊆ f−1(G), x /∈ f−1(U) and

f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.
Since f is a Gβω−continuous then f−1(G) and f−1(U) are Gβω−open in X. Hence X is a Gβω−regular space.

Theorem 4.14. Let f : (X,τ) → (Y,ρ) be Gβω−continuous injection function. If f is closed function and Y is a normal space 
then X is a Gβω−normal space.
Proof. Suppose F and H are any two closed sets in X such that F ∩H = ∅. since Since f is injection and closed function 
then f(F) and f(H) are closed sets in Y and

f(H) ∩ f(F) = f(H ∩ F) = f(∅) = ∅.
Since Y is a normal space then there are two open sets G and U in Y such that f(F) ⊆ G, f(H) ⊆ U and U ∩ G 

= ∅. Since f is injection then F ⊆ f−1(G), H ⊆ f−1(U) and
f−1(G) ∩ f−1(U) = f−1(G ∩ U) = f−1(∅) = ∅.

Since f is a Gβω−continuous then f−1(G) and f−1(U) are Gβω−open in X. Hence X is a Gβω−normal space.

5 βω−Connectedness property
Definition 5.1. Let (X,τ) be a topological space and A,B be two nonempty subsets of X. The sets A and B are called a 
βω−separated sets if Clβω(A) ∩ B = ∅ and A ∩ Clβω(B) = ∅.

Remark 5.2. Let (X,τ) be a topological space. Then
1. Any βω−separated sets are disjoint sets, since A ∩ B ⊆ A ∩ Clβω(B) = ∅.
2. Any two nonempty βω−closed sets in X are βω−separated if they are disjoint sets.

Definition 5.3. A topological space (X,τ) is called a βω−disconnected space if it is the union of two βω−separated sets. 
Otherwise A (X,τ) is called a βω−connected space.

Example 5.4. Any a countable topological space (X,τ) is a βω−disconnected space if X has more that one point.
The proof of the following theorem is clear since Clβω(A) ⊂ Cl(A).

Theorem 5.5. Every disconnected space is a βω−disconnected space.
The converse of the above theorem need not be true.

Example 5.6. In the topological space (X,T), where T = {∅,X} and X = {a,b}, is βω−disconnected space but it is a 
connected space.

Theorem 5.7. A topological space (X,τ) is a βω−disconnected space if and only if it is the union of two disjoint nonempty 
βω−open sets.
Proof. Suppose that (X,τ) is a βω−disconnected space. Then X is the union of two βω−separated sets, that is, there are 
two nonempty subsets A and B of X such that
Clβω(A) ∩ B = ∅, A ∩ Clβω(B) = ∅ and A ∪ B = X.
Take G = X − Clβω(A) and H = X − Clβω(B). Then G and H are βω−open sets. Since B 6= ∅ and Clβω(A)∩B = ∅, then B ⊆
X −Clβω(A), that is, G = X −Clβω(A) 6= ∅. Similar H 6= ∅. Since Clβω(A) ∩ B = ∅, A ∩ Clβω(B) = ∅ and A ∪ B = X, then

X − (G ∩ H) = (X − G) ∪ (X − H) = [Clβω(A)] ∪ [Clβω(B)] = X.
That is, G ∩ H = ∅.

Conversely, suppose that (X,τ) is the union of two disjoint nonempty βω−open subsets, say G and H. Take A = X 
−G and B = X −H. Then A and B are βω−closed sets, that is, Clβω(A) = A and Clβω(B) = B. Since H 6= ∅ and H ∩ G = ∅, 
then H ⊆ X − G = A, that is, A 6= ∅. Similar B 6= ∅. Since G ∩ H = ∅ and G ∪ H = X, then

Clβω(A) ∩ B = A ∩ B = (X − G) ∩ (X − H) = X − (G ∪ H) = X − X = ∅.
Similar, A ∩ Clβω(B) = ∅. Note that

A ∪ B = (X − G) ∪ (X − H) = X − (G ∩ H) = X −∅ = X.
That is, (X,τ) is a βω−disconnected space.

Corollary 5.8. A topological space (X,τ) is a βω−disconnected space if and only if it is the union of two disjoint nonempty 
βω−closed subsets.
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Proof. Suppose that (X,τ) is a βω−disconnected space. Then by Theorem (5.7), (X,τ) is the union of two disjoint nonempty 
βω−open subsets, say G and H. Then X −G and X −H are βω−closed subsets. Since G 6= ∅, H 6= ∅ and X = G ∪ H then 
X − G 6= ∅, X − H 6= ∅ and

(X − G) ∩ (X − H) = X − (G ∪ H) = X − X = ∅.
Since G ∩ H = ∅ then

(X − G) ∪ (X − H) = X − (G ∩ H) = X −∅ = X.
Hence X is the union of two disjoint nonempty βω−closed subsets.

Conversely, suppose that (X,τ) is the union of two disjoint nonempty βω−closed subsets, say G and H. Take A = X −
G and B = X − H. Then A and B are βω−open sets. Since H 6= ∅ and H ∩G = ∅, then H ⊆ X −G = A, that is, A 6= ∅. 
Similar B =6 ∅. Since G∩H = ∅ and G ∪ H = X, then

Clβω(A) ∩ B = A ∩ B = (X − G) ∩ (X − H) = X − (G ∪ H) = X − X = ∅.
Similar, A ∩ Clβω(B) = ∅. Note that

A ∪ B = (X − G) ∪ (X − H) = X − (G ∩ H) = X −∅ = X.
Then by Theorem (5.7), (X,τ) is a βω−disconnected space.

Theorem 5.9. A topological space (X,τ) is a βω−connected space if there is no nonempty proper subset of X which is both 
βω−open and βω−closed.
Proof. Suppose that (X,τ) is a βω−connected space. Let A be a nonempty proper subset of X which is both βω−open and 
βω−closed. Then X − A is a nonempty proper subset of X which is both βω−open and βω−closed. Since A ∪ (X − A) = 
X, then by Theorem (5.7), X is a βω−disconnected space and this a contradiction. So there is no nonempty proper 
subset of X which is both βω−open and βω−closed set.
Conversely, suppose that (X,τ) is a βω−disconnected space. Then by Theorem (5.7), X is the union of two disjoint 
nonempty βω−open subsets, say A and B. Then X − B = A is βω−closed subset of X. Since B 6= ∅ and X = A ∪ B then A 
is a nonempty proper subset of X which is both βω−open and βω−closed. This is a contradiction with the hypothesis. 
Hence (X,τ) is a βω−connected space. 

Theorem 5.10. Let f : (X,τ) → (Y,ρ) be a βω−continuous surjection function. If X is a βω−connected space then Y is 
connected space.
Proof. Suppose that Y is a disconnected space. Then by Theorem (5.7), Y is the union of two disjoint nonempty open 
subsets, say G and H. Since f is a βω−continuous then f−1(G) and f−1(H) are βω−open sets in X. Since G 6= ∅, H =6 ∅
and f is a surjection then f−1(H) 6= ∅ and f−1(G) 6= ∅. Since G ∩ H = ∅ and G ∪ H = X then

f−1(G) ∩ f−1(H) = f−1(G ∩ H) = f−1(∅) = ∅
and

f−1(G) ∪ f−1(H) = f−1(G ∪ H) = f−1(Y ) = X.
Hence X is the union of two disjoint nonempty βω−open subsets, that is, X is a βω−disconnected space. This is a a 
contradiction. Hence Y is a connected space. 

Theorem 5.11. Let f : (X,τ) → (Y,ρ) be a slightly βω−continuous surjection function. If X is a βω−connected space then 
Y is connected space.
Proof. Suppose that Y is a disconnected space. Then by Theorem (2.2), Y is the union of two disjoint nonempty open 
subsets, say G and B. Then G and B are clopen sets in Y . Since f is a slightly βω−continuous then f−1(G) and f−1(H) are 
βω−open sets in X. Since G 6= ∅, H 6= ∅ and f is a surjection then f−1(H) =6 ∅ and f−1(G) =6 ∅. Since G ∩ H = ∅ and G 
∪ H = X then f−1(G) ∩ f−1(H) = ∅ and f−1(G) ∪ f−1(H) = X. Hence X is the union of two disjoint nonempty βω−open 
subsets, that is, X is a βω−disconnected space. This is a a contradiction. Hence Y is a connected space. 
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