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The missing data is filled in by a random way. The complete data likelihood function of linear regression model with 
multiple change points for missing data is obtained. The full conditional distributions of change-point positions and other 
unknown parameters are studied. All the parameters are sampled by Gibbs sampler, and the means of Gibbs samples are 
taken as Bayesian estimations of the parameters. Random simulation results show that the estimations are fairly accurate.
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1. INTRODUCTION
The change point model is very important in mathematical statistics, and it is widely used in industrial quality control, 
economy, hydrologic statistics and other fields [1–4]. With the rapid development of statistical computing technology, 
Bayesian methods are increasingly applied, especially the Markov chain Monte Carlo (MCMC) methods [5–7]. Gibbs 
sampling of MCMC methods makes parameter estimation of change point model very convenient. Regression analysis is 
a statistical method to determine the quantitative relationship of the interdependence between variables. It is widely used 
in economy, finance, medicine and social science. Linear regression analysis is the most classical and most commonly 
used regression analysis method, and many nonlinear models can be transformed into linear regression models for analysis 
[8–10]. The linear regression change point model with complete data has been studied in literature[11–15],

but the lack of data is rarely studied. This paper mainly studies the parameter estimation of linear regression model with 
multiple change points for missing data by using MCMC methods. The missing data is filled in by a random way. All the 
parameters are sampled by Gibbs sampler, and the means of Gibbs samples are taken as Bayesian estimations of the 
parameters. Random simulation results show that the estimations are fairly accurate.

The rest of this paper is organized as follows. In Section 2, we present a description of linear regression model with 
missing data and its likelihood function. Section 3 describes multiple change-point problem under linear regression model 
with missing data and gives change-point estimation by Gibbs sampling and Metropolis-Hastings algorithm. In Section 5, 
random simulation test is developed and the test results show that Bayesian estimation of each parameter is fairly accurate. 
Finally, we summarize and conclude the paper in Section 6.

2. Linear regression model with missing data
The linear regression model is described as follows:

yi = α + βxi + εi,i = 1,2,··· ,n,

where xi is a non-random variable, εi ∼ N(0,σ2), yis are mutually independent, and θ = (α,β,σ2) is the parameter vector.
Let ϕ(x) denote the probability density function (pdf) of the standard normal distribution N(0,1). Since yi ∼ N(α + βxi,σ2), 
hence the likelihood function for complete data is given by

.

Suppose that some yis are missing in the observation data (yi,xi), however, the corresponding xis can be observed. In order 
to make full use of the data xi, it is better to add the missing yi = y1i. Since y1i ∼ N(α + βxi,σ2), we can generate y1i by random 
sampling.
Introduce indicative variable δi = I(yi is not missing). Let x,y and u1 be the vectors of xis,yis and y1is, respectively. Set D = 
{1,2,··· ,n} and let L(D) denote the number of elements in the set D.
Hence the likelihood function after adding data is given by

(1)
where

3. Linear regression model with multiple change points
Linear regression model with multiple change points is as follows:

where

), and k1 and k2 are called change-point position parameters.

4. Bayesian multiple change-point estimation

Set 
1,··· ,k2},D3 = {k2 + 1,··· ,n}, and li = L(Di), hence l1 = k1,l2 = k2 − k1, and l3 = n − k2.
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From Equations (1) and (2), under linear regression model with multiple change points, the likelihood function is 
given by

.
When δi = 0,

,
where u−1i = {y1j : j 6= i}.

The prior distributions of all parameters are as follows.
Let us consider a non informative joint prior distribution for k1 and k2

.

Let us consider a normal prior distribution N(µi,τi
2) for αi

.

Let us consider a normal prior distribution N(ρi,ωi
2) for βi

.

Let us consider a inverse gamma prior distribution IGa(γi,λi) for σi
2

.

Suppose that ( and are independent, hence

Let π(α1|·) denote .

The full conditional distributions of all parameters are as follows.

where

.

where

.

.

Volume-7 | Issue-1 | Feb, 2021 13



The full conditional distributions of k1 and k2 are both not common standard distributions:

,
where si = g(αi,βi,Di),i = 1,2,3.

Since full conditional distributions are obtained, we can get the stationary distributions of every parameter using 
MCMC methods. αis, βis and σi

2s are all generated directly by Gibbs sampling. However, it is difficult to conduct Gibbs 
sampling directly for k1 and k2, so we use Metropolis-Hastings algorithm to sample k1 and k2, and the two proposed 
distributions are selected as discrete uniform distributions.

The MCMC methods can be described by the following iterative steps; where γ(t) is the vector of generated values in t 
iteration of the algorithm:

(1) Set 
(2) For t = 1,2,··· ,M, repeat the following steps:
1. Set γ = γ(t−1).

2. When δi = 0, generate from ψ(y1i;γ,xi) and set .

3. Generate from π(α1|·) and set

2(t)

4. The generations ofs and σi s are similar to.

5. Sample from 2, 1 and generate u from uniform U(0,1).

Set , set ),

set otherwise, and set .

6. Sample from 1 and generate u from uniform U(0,1).

Set , set ),

set otherwise, and set .

Assume that 
(t = 1,2,··· ,B,··· ,M) is a Gibbs sample, and in the burnin period the first
B iterations are eliminated from the sample in order to avoid the influence of the initial values. Consider {γ(B+1),γ(B+2),··· 
,γ(M)} as the sample for the posterior analysis. From this sample, in the following simulation test, we will estimate the 
posterior mean, median, 2.5% and 97.5% quantiles of γ.

5. Simulation results
The simulation test is developed using the R software. The sample size used in this study is n = 200. The vector 

is taken as (60,150,−2,4,1.5,3,−0.8,2.5,2.8,1,3.6). First take the constants 
x1,x2,··· ,xn, then select the majority of xis and generate no missing data yi from N(αm + βmxi,σm

2 ),i ∈ Dm,m = 1,2,3. The yis 
corresponding to the remaining small part of xis are taken as the missing data. We consider normal prior distributions 
N(−2.3,0.5) for α1, N(3.8,1.5) for α2, and N(1.3,0.7) for α3. Consider prior distributions N(2.7,0.6) for β1, N(−0.75,0.2) for 

β2, and N(2.8,1.2) for β3. Consider prior distributions for , and IGa(3,7.5) for .
Using MCMC methods, our analysis focuses on k1 and k2. In the process of simulation, total number of iterations is M = 
20000, and the first 10000 iterations are eliminated in the burnin period. The simulation results are presented in Table 1. 
The iterations of k1 and k2 are presented in Figure 1.
To monitor the convergence of the algorithm, we run multiple chains with different starting points. When we observe that 
the lines of different chains mix or cross in trace, then convergence is ensured. In the simulation study, we run two chains 
with different starting points. The two iterative chains of k1 and k2 are presented in Figure 2.
The analysis of simulation results is as follows. First, it can be observed from Table 1 that the relative errors of k1 and k2 

are both no more than 2%, the relative errors of the other parameters are no more than 6%, and MC errors is small. The 
difference in Gibbs sample median and mean is very small, so sample median is also taken Bayesian estimation of the 
parameter. A 95% credible interval is approximately obtained as [2.5% quantile, 97.5% quantile],

Volume-7 | Issue-1 | Feb, 2021 14



Table 1The results of Bayesian estimations of parameters

θ True value Mean Relative error MC error 2.5% Median 97.5%

k1 60 60.20040 0.00334 0.00940 59 60 63

k2 150 147.42580 0.01716 0.09788 128 150 169

α1 -2 -2.03618 0.01809 0.00118 -2.22702 -2.03826 -1.84056

α2 4 4.03084 0.00771 0.00234 3.65179 4.02820 4.41804

α3 1.5 1.55510 0.03674 0.00090 1.40752 1.55532 1.70255

β1 3 3.06701 0.02234 0.00178 2.77640 3.06665 3.36025

β2 -0.8 -0.83712 0.04640 0.00048 -0.91665 -0.83713 -0.75803

β3 2.5 2.56922 0.02769 0.00148 2.32633 2.56783 2.81476

2.8 2.91736 0.04192 0.00168 2.63921 2.91815 3.19179

1 1.05222 0.05222 0.00061 0.95243 1.05309 1.15209

3.6 3.72434 0.03454 0.00215 3.37304 3.72209 4.08226

Figure:1 Gibbs iterations of k1 and k2

Figure 2 Two iterative chains of k1 and k2

whose length is very short, so the effect of interval estimation is good. In general, Bayesian estimations are fairly accurate. 
From Figure 1, it can be observed that the Gibbs sampling has small fluctuation, and tends to be stable and presents a 
strong regularity. Second, monitor the convergence of the algorithm. It can be observed from Figure 2 that the trace plots 
of the two chains mix, which ensures the convergence. Above all, the effect of simulation test is good using MCMC 
methods.

6. Conclusions
In this paper, we consider Bayesian multiple change-point estimation under linear regression model with missing data. 
The full conditional distributions of all parameters are dicussed. Bayesian estimations of parameters are studied by Gibbs 
sampling and Metropolis-Hastings algorithm of MCMC methods. Our simulation results show that Bayesian estimations 
of the parameters are fairly accurate and the effect of simulation is good using MCMC methods.
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