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1. INTRODUCTION
The life of many products is discrete, such as some connector products (such as switches, etc.), the life can be described 
by geometric distribution. Geometric distribution plays a very important role in reliability theory and applied probabilistic 
model because of its memorylessness. In the discrete life case, geometric distribution plays the role of exponential 
distribution in the continuous case, so the study of geometric distribution products has important theoretical and 
application value. Although the statistical analysis of geometrically distributed products is not as mature as exponential 
distribution, there are some research results, which can be found in references [1–10]. In this paper, for the first time, we 
propose a geometric distribution of the fixed group truncation life test, even the timed truncation can be reduced to the 
fixed group truncation.

This paper gives the maximum likelihood estimation of the parameter of geometric distribution under fix-group and 
fix-time censored test, then sets a linear and regression model using the asymptotic normality of MLE and makes
statistical analysis of geometric distribution under constant-stress accelerated life test.

The rest of this paper is organized as follows. In Section 2, we obtain the MLE of geometric distribution parameter 
under censoring life test with certain stress conditions. Section 3 makes statistical analysis of geometric distribution under 
constant-stress accelerated life test. First of all, it gives the arrangement and basic assumptions of tests, then makes the 
statistical analysis under censored sample. In Section 4, we make the statistical analysis of the data from a specific 
example using the previous statistical methods. Finally, we summarize and conclude the paper in Section 5.

2. MLE of geometric distribution parameter under censoring life test with certain stress conditions
When the product life follows the continuous distribution, the fixed and timed censoring life tests are often used in the 
product life tests. If the product life follows the discrete distribution, the fixed group censoring life test and the fixed 
timed censoring life test can be used when the product life test is carried out. The fixed group censoring life test is to stop 
the test when r groups of different failure data are observed.

Suppose the product life T follows geometric distribution Geo(p), and its probability distribution is
P(T = t) = pqt−1 , t = 1,2,3,··· ; 0 < p < 1,q = 1 − p.

Randomly selected n products were subjected to a fixed group of censoring life test under a certain stress condition, 
or all were subjected to a fix-time censoring life test. There are r groups of failures in the n products, and the failure data 
is

1 ≤ t1 < t2 < ··· < tr ≤ τ,

where the failure data of mi of the n products is ti (i = 1,2,··· ,r), and τ is the time at which the test is to be stopped in 
advance. In a fixed group censoring life test, τ=tr. In order to give the maximum likelihood estimation of p, the likelihood 
function of the sample can be written as

,

Where is called as total test time, and is the 
number of failures.

The logarithmic likelihood function is
lnL(p) = k + Mr lnp + (Tr − Mr)ln(1 − p),

where is a constant independent of the parameter p.
Set

,
the maximum likelihood estimation (MLE) of p is obtained as

.

3. Statistical analysis of geometric distribution under constantstress accelerated life test
3.1. Arrangement and basic assumptions of tests
The arrangement of constant-stress accelerated life test is as follows:

(1) Determine the normal stress level S0 and k accelerated stress levels S1,··· ,Sk, these stress levels should generally 
satisfy the following relationships:

S0 < S1 < ··· < Sk.
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(2) The n products are randomly selected from a batch of products and divided into k samples with sample sizes of 
n1,··· ,nk respectively, and n1 + ··· + nk = n. The ith sample will be arranged under Si for life test.

(3) At k accelerated stress levels, the fix-group censored tests are carried out, or the fix-time censored tests are 
carried out. In ni products under Si, there are ri groups of failures, and the failure data is

1 1 ≤ ti1 < ti2 < ··· < tiri ≤ τi i = 1,2,··· ,k,

where the failure data of mij of the ni products is tij (j = 1,2,··· ,ri), τi is the censoring time of the product under Si. If the 
censored test is fix-time, then τi = tiri.

The statistical analysis of geometric distribution under constant-stress accelerated life test is carried out under the 
following two basic assumptions:

(1) Under normal stress level S0 and accelerated stress levels S0 < S1 < ··· < Sk product life Ti (i = 0,1,··· ,k) all follow 
geometric distributions, whose probability distribution are respectively

P(Ti = t) = pi(1 − pi)t−1 , t = 1,2,··· , i = 0,1,2,··· ,k.

Set θi = pi
−1, easy to know θi and pi are the average life and failure efficiency of products under Si respectively.

(2) The following acceleration model is satisfied between the average life θi of the product and the level Si of 
acceleration stress used:

lnθi = a + bϕ(Si), i = 1,2,··· ,k,

where a and b are the parameters to be estimated, and ϕ(S) is the known function of S (when the stress level S is the 
absolute temperature, then ϕ(S) = 1/S, and the acceleration model is called Arrhenius model; when the stress level S is the 
voltage, then ϕ(S) = lnS, and the acceleration model is called the inverse power law model).

Under the above arrangements and assumptions, the statistical analysis of constant-stress accelerated test data is 
carried out in the following three steps:

(1) Try to get the point estimation of parameters a and b in the acceleration model;
(2) According to assumption (2), the point estimate of average life θ0 under normal stress level S0 is obtained;
(3) According to assumption (1), The probability distribution of geometric distribution under S0 is obtained, thus it 

is not difficult to calculate the estimation of various reliability indexes under S0.

3.2. Statistical analysis under censored sample
In the constant-stress accelerated life test, the total test time of censored test under the accelerated stress level Si is

Although the distribution of Ti
∗ is difficult to obtain, the asymptotic normality of maximum likelihood estimation can 

be used for statistical analysis. However, the sample size and failure number are both large at each stress level. Let’s 
describe this method in detail.

(1) According to the assumption (1), the life distribution under the accelerated stress level Si is geometric, so the 
MLE of its average life θi is

(2) According to the assumption (1) and asymptotic normality of MLE, the following one-variable linear regression 
model can be established

lnθˆ
i = a + bϕ(Si) + εi , i = 1,2,··· ,k,

where εi is random error term, E(εi) = 0,V ar(εi) = σ2, and ε1,ε2,··· ,εk are independent of each other.
(3) The least square estimation (LSE) of a and b can be obtained as by the least square method for the above one-

variable linear regression

where

.
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This leads to the following acceleration model

(4) Point estimation of reliability index.
If S = S0, the point estimate of lnθˆ

0 can be obtained from the acceleration equation as follows:
lnθˆ

0 = aˆ +ˆbϕ(S0).

From above, the estimation of average life under normal stress level S0 can be obtained as θˆ
0 = eaˆ+ˆbϕ(S0), then the 

estimation of p0 (namely failure efficiency) can be obtained as ̂ p0 = e−[aˆ+ˆbϕ(S0)], and finally according to ˆp0, the estimation 
of other reliability indexes can be obtained. For example, the estimation of reliability R(t) = P(T0 > t) = (1 − p)t is Rˆ(t) = 
{1 − e−[aˆ+ˆbϕ(S0)]}t.

To obtain the estimation of the acceleration coefficient τSi∼S0, the expression of the acceleration coefficient for α 
quantile lifetime is first required. Suppose the failure distribution function of the product under the stress level Si is Fi(t) 

(i = 0,1,2,··· ,k), then the acceleration coefficient of α quantile lifetime is τSi∼S0 = , where F0(tα,0) = α,Fi(tα,i) = α, it is 

easy to derive , and the acceleration coefficient is independent of α. So the estimate of the acceleration 

coefficient is ˆ qi .

(5) Testing of acceleration model.
We test the significance of the acceleration model by the correlation coefficient. Consider a pair of samples (xi,yi) = 

(ϕ(xi),lnθˆ
i), i = 1,2,··· ,k, and their correlation coefficients are defined as

,

where lxx,lxy is described above, and

.
For a given significance level α(0 < α < 1), rα can be found from the critical value table of correlation coefficient test. If 
|r| > rα, then xi is considered to be correlated with yi in this sample, and the acceleration model can be used.

4. An example
We make the statistical analysis of the data from a specific example using the previous statistical methods. After plug-in 
products are put into production, 80 pieces of qualified products are selected for constant temperature accelerated life 
test. The four acceleration temperature levels selected are 70◦,90◦,110◦,130◦. It can be seen from similar products that the 
failure mechanism of this plug-in is the same between 30◦ and 150◦, and the life distributions are all geometric 
distributions, but the average life is different, and 40◦ is the normal operating temperature. Arrhenius model is chosen as 
the acceleration model, i.e., lnθi = a + b/Si, the unit of Si here is the absolute temperature. Now 80 sam-

Table 1Geometrically distributed product constant temperature accelerated life test data

Test conditions Failure time

S1 = 70◦ (343K),n1 = 20,r1 = 8 12,42,153,153,291,302,316,334,595

S2 = 90◦ (363K),n2 = 20,r2 = 14 7,18,62,80,80,149,203,247,247,288,295,302,350
359,377,384

S3 = 110◦ (383K),n3 = 20,r3 = 13 1,23,45,45,58,77,90,116,124,131,131,146,158
158,165,180

S4 = 130◦ (403K),n4 = 20,r4 = 13 3,4,5,8,18,18,20,21,24,25,27,27,35,49,50

ples are divided into four groups, with 20 in each group, and fix-group censored life tests are carried out in a fixed group 
at four accelerating temperature levels, respectively. The failure groups specified in advance are 8,14,13 and 13, 
respectively. The failure time is shown in Table 1.
Further data processing is carried out in the following steps.

(1) Testing of acceleration model.
First, the estimated average life value θˆ

i and its logarithm yi = lnθˆ
i at each temperature level are calculated according 

to Equation (1). Then the correlation coefficient r = 0.98898 between xi = Si
−1 and yi = lnθˆ

i is calculated, and its degree of 
freedom f = k − 2 = 4 − 2 = 2. Check the critical value table of correlation coefficient test, and at the significance level α 
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= 0.05, the critical value of correlation coefficient test rα = 0.95. From r > rα, it is believed that there is a linear relationship 
between xi and yi.

(2) Estimation of acceleration model.
By the least square method, the estimated values of coefficients a and b in the acceleration model are calculated: ˆa = 

−13.1644,ˆb = 6856.722. Thus the estimation of the accelerated model is obtained as
lnθˆ= −13.1644 + 6856.722/S.

(3) Estimation of reliability indexes.
When S is 40◦(313K), the estimated value of reliability indexes such as average life at normal operating temperature 

can be calculated from the above acceleration equation
θˆ0 = e−13.1644+6856.722/313 = 6260, pˆ0 = 1/θˆ

0 = 1.6 × 10−4, Rˆ
0(1000) = (1 − pˆ0)1000 = 0.852366.

(4) Estimation of acceleration coefficient.

,

5. Conclusions
In this paper, we give the maximum likelihood estimation of the parameter of geometric distribution under fix-group and 
fix-time censored test, set a linear and regression model using the asymptotic normality of MLE, and make the statistical 
analysis of geometric distribution under constant-stress accelerated life test. Finally we make the statistical analysis of 
the data from a specific example.
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