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Abstract:-
In this work, we determine a parametrization of algebraic points of degrees at most 3 over Q on curve C of affine equation 
y2 = x5 + 20736. This result extends a result of S. Siksek and M. Stoll who described in [4] the set of Q-rational points on 
this curve.
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INTRODUCTION
Let C be a smooth algebraic curve defined over Q. Let K be a numbers field. We note by C (K) the set of points of C with 
coordinates in K and[C (K) the set of points of [K: Q] ≤d
C with coordinates in K of degree at most d over Q.
We denote by J the jacobian of C and by j (P) the class [P −∞] of P −∞, that is to say that j is the Jacobian diving C −→ 
J (Q). The Mordell-Weil group J (Q) of rational points of the jacobian is a finite set (refer to [4]). We denote by P = 
(0,144), P¯ = (0, −144) and ∞ the point at infinity. In [4], S. Siksek ET M. Stoll gave a description of the rational points 
over Q on this curve. This description is as follows:
Proposition. The Q-rational points on C are given by

C (Q) = n∞, P, P¯o

In this note, we determine the algebraic parametrization of all algebraic points of degrees at most 3 over Q on curve C of 
affine equation

y2 = x5 + 20736
Our essential tools are:
- The Mordell-Weil group J (Q) of rational points of the jacobian (refer to [4])
- Abel Jacobi’s theorem (refer to [1])

- Linear systems on the curve C.
Our main result is given by the following theorem:
Theorem.
1. The set of quadratic points on C are given by

N 5 + 20736, α Q o. S = α, ± α

2. The set of cubic points on C are given by
A = n(x, ±144 − αx2)| α Q and x root of E(x) = x3 − α2x2 ± 288αo

Auxiliary results
For a divisor D on C, we note L (D) the Q - vector space of rational functions F defined
On Q such that F = 0 or div (F) ≥ −D; l (D) designates Q-dimension of L (D). In [4], the Mordell-Weil group J (Q) of C 
is isomorph to Z/5Z and C is a hyperelliptic curve of genus g = 2. Let x, y be two rational functions on Q defined as 
follow:

X(X, Y, Z) - X ET y(X, Y, Z) =YZ
Z

The projective equation of C is
C: Y 2Z3 = X5 + 20736Z5 = X5 + 1442Z5

We denote by η2 = e and let’s put Bk = (5√20736 η2k+1, 0) for k {0, 1, 2, 3, 4}.
Let us designate by D.C the intersection cycle of algebraic curve D defined on Q and C.

Lemma 1. .
• div(x) = P + P¯ − 2∞
• div(y − 144) = 5P − 5∞
• div(y + 144) = 5P¯ − 5∞
• div(y) = B0 + B1 + B2 + B3 + B4 − 5∞

Proof. C: Y 2Z3 = X5 + 20736Z5 (projective equation)

• Div(x) = div (X
Z) = (X = 0).C − (Z = 0).C.

For X = 0, we have Y 2Z3 = 20736Z5 according to (3), which gives Z3 = 0 or 
Y 2 = (144Z) 2.
On the one hand for X = 0, we have Z3 = 0 with Y = 1. We obtain the point
∞ = (0, 1, 0) with multiplicity 3.
On the other hand for X = 0, we Y = 144Z or Y = −144Z with Z = 1. We obtain the points P = (0, 144, 1) with multiplicity 
1 and P¯ = (0, −144, 1) with multiplicity
1. Hence (X = 0).C = P + P¯ + 3∞ ( )
Even if Z = 0, then X5 = 0; and for Y = 1, we have the point ∞ = (0, 1, 0) with multiplicity 5. Hence (Z = 0).C = 5∞ ( ).
The relations ( ) and ( ) imply that div(x) = P + P¯ − 2∞.
• Similarly we show that div(y − 144) = 5P − 5∞, div(y + 144) = 5P¯ − 5∞ and div(y) = B0 + B1 + B2 + B3 + B4 − 5∞.

Consequences of lemma 1 : 5j (P) = 5j P¯ = 0 et j (P) + j P¯ = 0
Lemma 2.
• L(∞) = h1i
• L(2∞) = h1, xi = L(3∞)
• L(4∞) = h1, x, x2i
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• L(5∞) = h1, x, x2, yi
• L(6∞) = h1, x, x2, y, x3i
• L(7∞) = h1, x, x2, y, x3, xyi
Proof Results from lemma 1 and from the fact that according to the theorem of RiemannRoch we have l (m∞) = m − 1 as 
soon as m ≥ 3.
Lemma 3. J(Q) = Z/5Z = h[P − ∞]i = {a[P − ∞],a {0,1,2,3,4}}.
Proof Refer to [4].
Proof of theorem

Quadratic points (algebraic points of degree 2) on C
The set of quadratic points on C are given by

S = {√ (α, ± α5 + 20736), α Q}

Proof: Given R C (Q¯) with [Q[R]: Q] = 2. Note that R1, R2 are the Galois conjugates of R. Let’s work with t = [R1 + 
R2 − 2∞] J (Q), according to lemma 3 we have t = a [P − ∞], 0 ≤ a ≤ 4. So we have [R1 + R2 − 2∞] = a [P − ∞] = −ahP¯ 
− ∞i according to the consequences of lemma 1
Our proof is divided in three cases:

Case a = 0

We have [R1 + R2 − 2∞] = 0; then there exist a function F with coefficient in Q such that div (F) = R1 + R2 − 2∞, then F 
L (2∞) and according to lemma 2 we have F(x,y) = a1 + a2x with a2 6= 0 otherwise one of the Ri should be ∞.
For the points Ri, we have a1 + a2x = 0 hence x = − a1 = α Q.

a2

By replacing x by α in (1), we have:
y2 = α5 + 20736

And then we have
√y = ± α5 + 20736

So we find a family of quadratic points

S = {(α, ± √α5 + 20736, α) Q}
Cases a = 1 and a = 4

For a = 1, we have hR1 + R2 + P¯ − 3∞i = 0, then there exist a function F with coefficient in Q such that div (F) = R1 + R2 

+ P¯ − 3∞, then F L (3∞) and as L (2∞) = L (3∞) then one of the Ri should be equal to ∞, we obtain a contradiction.

For a = 4, we have [R1 + R2 + P − 3∞] = 0, then there exist a function F with coefficient in Q such that div (F) = R1 + R2 

+ P − 3∞, then F L (3∞) and as L (2∞) = L (3∞) then one of the Ri should be equal to ∞, we obtain a contradiction.
Cases a = 2 and a = 3

For a = 2, we have [R1+R2+2P¯−4∞] = 0; then there exist a function F with coefficient in Q such that div (F) = R1 +R2 

+2P¯ −4∞, then F L (4∞) and according to lemma 2 we have F(x, y) = a1 + a2x + a3x2 with a3 = 06 otherwise one of the 
Ri should be ∞. The function F is of order 2 at point P¯ so we must have a1 = a2 = 0, so F(x, y) = a3x2 and we should have 
R1 = R2 = P, we obtain a contradiction.

For a = 3, we have [R1 + R2 + 2P − 4∞] = 0; then there exist a function F with coefficient in Q such that div (F) = R1 +R2 

+2P −4∞, then F L (4∞) and according to lemma 2 we have F(x, y) = a1 +a2x+a3x2 with a3 6= 0 otherwise one of the Ri

should be ∞. The function F is of order 2 at point P so we must have a1 = a2 = 0, so F(x, y) = a3x2 and we should have R1 

= R2 = P¯, we obtain a contradiction.

Cubic points (algebraic points of degree 3) on C
The set of cubic points on C are given by

C = n(x, ±144 − αx2)| α Q and x root of E(x) = x3 − α2x2 ± 288αo

Proof: Given R C (Q¯) with [Q[R]: Q] = 3. Note that R1, R2, R3 are the Galois conjugates of R. Let’s work with t = [R1 

+ R2 + R3 − 3∞] J (Q), according to lemma 3 we have t = a [P − ∞], 0 ≤ a ≤ 4.
So we have [R1+R2+R3−3∞] = a [P − ∞] = −ahP¯ − ∞i according to the consequences of lemma 1.

Our proof is divided in three cases:
Case a = 0

We have [R1 + R2 + R3 − 3∞] = 0; then there exist a function F with coefficient in Q such that div (F) = R1 + R2 + R3 − 3∞, 
then F L (3∞) and as L (2∞) = L (3∞) then one of the RI should be equal to ∞, we obtain a contradiction.

Cases a = 1 and a = 4
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For a = 1, we have hR1 + R2 + R3 + P¯ − 4∞i = 0, then there exist a function F with coefficient in Q such that div (F) = R1 

+ R2 + R3 + P¯ − 4∞, then F L (4∞), then F L (2∞) and according to lemma 2 we have F(x, y) = a1 + a2x + a3x2 with 
a3 6= 0 otherwise one of the Ri should be ∞. For the point P¯, we have F (P¯) = 0, so a1 = 0 and we have F(x, y) = x (a2 + 
a3x). For the points RI, we have x (a2 + a3x) = 0, then x Q and therefore the RI should be of degree ≤ 2, we obtain a 
contradiction.

For a = 4, by a similar argument as in case a = 1, we obtain the same contradiction.
Cases a = 2 and a = 3

For a = 2, we have [R1 + R2 + R3 − 3∞] = 2j (P) = −2j (P¯). Then there exist a function F with coefficient in Q such that 
div (F) = R1 + R2 + R3 + 2P¯ − 5∞, so F L (5∞) and therefore F(x, y) = a1 + a2x + a3x2 + a4y with a4 6= 0 otherwise one 
of the RI should be ∞. The function F is of order 2 at point P¯ so we must have a1 − 144a4 = 0 and a2 = 0 hence F(x, y) = 
a4(y + 144) + a3x2.
For the points RI, we have a4(y + 144) + a3x2 = 0 hence y = −144 − a

a
34x2. We see that y is of the form y = −144 − αx2 

with α Q otherwise one of the RI should be P¯, ET par suite on an y2 = x5 + 20736 (−144 − αx2)2 = x5 + 20736 x5 

− α2x4 − 288αx2 = 0 x2(x3 − α2x2 − 288α) = 0. We must have x2 6= 0 and α Q , we obtain a family of cubic points 
given by

A = n(x,−144 − αx2)| α Q et x racine de E1(x) = x3 − α2x2 − 288αo

For a = 3, by a similar argument as in case a = 2, we obtain a family of cubic points given by
B = n(x,144 − αx2)| α Q et x racine de E2(x) = x3 − α2x2 + 288αo

By combining these two families of cubic points, we obtain
C = n(x,±144 − αx2)| α Q and x root of E(x) = x3 − α2x2 ± 288αo
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