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Abstract:-

In this work, we determine a parametrization of algebraic points of degrees at most 3 over Q on curve C of affine equation
V2 = x4+ 20736. This result extends a result of S. Siksek and M. Stoll who described in [4] the set of Q-rational points on
this curve.

Keywords:- Planes curves - Degree of algebraic points - Rationals points - Algebraic extensions — Jacobian

Mathematics Subject Classification: /4H50 - 14H40 - 11D68 - 12F05

@

Volume-7 | Issue-1 | Jan, 2021

22



INTRODUCTION
Let C be a smooth algebraic curve defined over Q. Let K be a numbers field. We note by C (K) the set of points of C with
coordinates in K and (K) the set of points of [K: Q] <d
C with coordinates in K of degree at most d over Q.
We denote by J the jacobian of C and by j (P) the class [P —o0] of P —oo, that is to say that j is the Jacobian diving C ——
J (Q). The Mordell-Weil group J (Q) of rational points of the jacobian is a finite set (refer to [4]). We denote by P =
(0,144), P = (0, —144) and oo the point at infinity. In [4], S. Siksek ET M. Stoll gave a description of the rational points
over Q on this curve. This description is as follows:
Proposition. The Q-rational points on C are given by
C(Q)="w0, P,P°
In this note, we determine the algebraic parametrization of all algebraic points of degrees at most 3 over Q on curve C of
affine equation
Y2 =x>+20736
Our essential tools are:
- The Mordell-Weil group J (Q) of rational points of the jacobian (refer to [4])
- Abel Jacobi’s theorem (refer to [1])
- Linear systems on the curve C.
Our main result is given by the following theorem:
Theorem.
1. The set of quadratic points on C are given by
N3+20736,a €Q.0.S=0, £

2. The set of cubic points on C are given by
A="(x, 144 — ax?)| a €Q*and x root of E(x) = x> — a’x* £ 288a°
Auxiliary results .
For a divisor D on C, we note L (D) the Q - vector space of rational functions F defined
On Q such that F =0 or div (F) > —D; [ (D) designates Q-dimension of L (D). In [4], the Mordell-Weil group J (Q) of C
is isomorph to Z/5Z and C is a hyperelliptic curve of genus g = 2. Let x, y be two rational functions on Q defined as
follow:
XX, Y,2)-XETy(X,Y,Z)=YZ
zZ

The projective equation of C'is
C: Y22 =X +207362°= X°+ 144°7°

We denote by = 75 and let’s put Bi= (V20736 7**1, 0) for k €70, 1,2, 3, 42,
Let us designate by D.C the intersection cycle of algebraic curve D defined on Q and C.

Lemma 1. .

e divix)=P+P — 2w

o div(y — 144)=5P — 5

o divy+144)=5P — 5

. diV(y):Bo+Bl+Bz+B3+B4—Soo

Proof. C: Y27 = X°+ 207367’ (projective equation)

* Div(x)=div (8 = (X=0).C — (£Z=0).C.

For X= 0, we have Y 2Z*= 207362 according to (3), which gives Z*= 0 or

Y?2=(1442)%

On the one hand for X = 0, we have Z3= 0 with ¥ = 1. We obtain the point

oo = (0, 1, 0) with multiplicity 3.

On the other hand for X =0, we Y= 144Z or Y = —144Z with Z = 1. We obtain the points P = (0, 144, 1) with multiplicity
1 and P = (0, —144, 1) with multiplicity

1. Hence (X=0).C=P+P + 300 (%)

Even if Z = 0, then X°= 0; and for Y = 1, we have the point co = (0, 1, 0) with multiplicity 5. Hence (Z = 0).C = 500 (#*).
The relations (#) and (**) imply that div(x) = P+ P — 2o0.

* Similarly we show that div(y — 144) = 5P — 500, div(y + 144) = 5P — 500 and div(y) = Bo+ Bi+ Ba+ B3+ B4y — 500,

Consequences of lemma 1: 5/ (P)=5jP =0etj(P)+jP =0
Lemma 2.

. L(w) = hli

o [(2:0) = h1, xi = L(3%0)

e L(40) = hl, x, x%
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e L(50) = hl, x, x% yi

o L(6w)=hl, x, X%, y, X0

o L(T0)=hl, x, X%, y, X3, xyi

Proof Results from lemma 1 and from the fact that according to the theorem of RiemannRoch we have / (mo) =m — 1 as
soon as m > 3.

Lemma 3. J(Q) ~=Z/5Z = h[P — »]i = {a[P — ©],a €{0,1,2,3,4}}.

Proof Refer to [4].

Proof of theorem

Quadratic points (algebraic points of degree 2) on C
The set of quadratic points on C are given by

S={ (a +a°+20736), a €Q}

Proof: Given R € C (Q ) with [Q[R]: Q] = 2. Note that Ry, R2 are the Galois conjugates of R. Let’s work with ¢ = [R; +
Ry — 2] €J(Q), according to lemma 3 we have t=a [P — ], 0 <a <4. So we have [R| + Ry — 200] =a [P — o] = —a'P~
— *laccording to the consequences of lemma 1
Our proof is divided in three cases:

Casea=0

We have [R;+ R, — 2o0] = 0; then there exist a function F with coefficient in Q such that div (F) = R; + R, — 200, then F €
L (20) and according to lemma 2 we have F(x,y) = a1 + a>x with a; 6= 0 otherwise one of the R;should be co.
For the points R;, we have a1+ axx=0hencex=—a' =a €Q.
3.2
By replacing x by a in (1), we have:
V' =0o’+20736
And then we have
\y=+a’+20736

So we find a family of quadratic points

S = {(a, £ Vo’ + 20736, a) €Q}
Casesa=1anda=4

For a = 1, we have hR; + R+ P — 300'= 0, then there exist a function F with coefficient in Q such that div (F) = R, + R,
+ P — 300, then F' € L (30) and as L (200) = L (30) then one of the R; should be equal to c, we obtain a contradiction.

For a =4, we have [R|+ R, + P — 3] = 0, then there exist a function F with coefficient in Q such that div (F) =R+ R»
+ P — 300, then F € L (30) and as L (2:0) = L (30) then one of the R; should be equal to oo, we obtain a contradiction.
Casesa=2anda=3

For a = 2, we have [R;+Ry+2P —4x] = 0; then there exist a function F with coefficient in Q such that div (F) = Ri +R,
+2P —4oo, then F € L (40) and according to lemma 2 we have F(x, y) = a1 + a»x + asx? with a3 = 06 otherwise one of the
R;should be . The function F is of order 2 at point P so we must have a; = a>= 0, so F(x, y) = asx* and we should have
R1= R,= P, we obtain a contradiction.

For a =3, we have [R; + R, + 2P — 4] = 0; then there exist a function F’ with coefficient in Q such that div (F) = R1 +R:
+2P —4o0, then F € L (40) and according to lemma 2 we have F(x, y) = a) +axx+asx* with a3 6= 0 otherwise one of the R;
should be . The function F is of order 2 at point P so we must have a; = a>,= 0, so F(x, y) = asx? and we should have R,
=R,="", we obtain a contradiction.

Cubic points (algebraic points of degree 3) on C
The set of cubic points on C are given by
C="(x, £144 — ax?)| o €Q*and x root of E(x) = x> — 0o’x*+ 288a°
Proof: Given R € C (Q ) with [Q[R]: Q] = 3. Note that R;, R2, R3 are the Galois conjugates of R. Let’s work with = [R)
+ Ry + Rz — 30] €J(Q), according to lemma 3 we have t=a [P — »], 0 <a <4.
So we have [R1+R,+R3—3w] = a [P — ©] = —a"P — o' according to the consequences of lemma 1.

Our proof is divided in three cases:
Casea=0
We have [R1+ R>+ R3 — 3] = 0; then there exist a function F with coefficient in Q such that div (F) = Ri+ Ry + Rz — 300,
then F' € L (30) and as L (200) = L (3) then one of the R;should be equal to o, we obtain a contradiction.
Casesa=1anda=4
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For a = 1, we have hR| + R+ R3+ P — 4o0' = 0, then there exist a function F with coefficient in Q such that div (F) = R,
+ R+ R3+ P — 4o, then F € L (40), then F € L (200) and according to lemma 2 we have F(x, y) = a1 + axx + asx® with
a3 6= 0 otherwise one of the R, should be . For the point P, we have F (P ) =0, so a; = 0 and we have F(x, y) = x (a2 +
asx). For the points R;, we have x (a2 + azx) = 0, then x € Q and therefore the R;should be of degree < 2, we obtain a
contradiction.

For a = 4, by a similar argument as in case a = 1, we obtain the same contradiction.
Casesa=2and a=3

For a =2, we have [R; + R+ R3; — 300] = 2j (P) = —2j (*'). Then there exist a function F with coefficient in Q such that
div(F)=Ri+ R+ R3+ 2P — 500, 50 F € L (5) and therefore F(x, ¥) = a1 + axx + asx*> + a4y with a4 6= 0 otherwise one
of the R;should be co. The function F is of order 2 at point ” so we must have a; — 144a4= 0 and a2= 0 hence F(x, y) =
as(y + 144) + asx?.
For the points R;, we have as(y + 144) + asx?>= 0 hence y = —144 — ¢,34x% We see that y is of the form y = =144 — ax?
with a € Q~otherwise one of the R;should be P, ET par suite on an y?= x>+ 20736 < (—144 — ax?)?=x>+20736 < x°
— ax* — 288ax? = 0 & x*(x> — o®x* — 288a) = 0. We must have x? 6= 0 and a € Q*, we obtain a family of cubic points
given by
A ="(x,—144 — ax?)| a € Q~et x racine de E\(x) = x* — a’x* — 288a°
For a = 3, by a similar argument as in case a = 2, we obtain a family of cubic points given by
B ="(x,144 — ax®)| o €Q*et x racine de Ex(x) = x> — o’>x*+ 288a°
By combining these two families of cubic points, we obtain
C ="(x,£144 — ax®)| o € Q*and x root of E(x) = x> — o’x* £ 288a°
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