PARAMETER ESTIMATION FOR A CLASS OF DIFFUSIONPROCESS FROM DISCRETE OBSERVATION

Authors

  • Chao Wei C. Wei is with the School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
  • Fang Xu Fang Xu is with the school clinic, Anyang Normal University, Anyang 455000, China. Email: 542532097@qq.com

DOI:

https://doi.org/10.53555/eijms.v3i2.10

Keywords:

Diffusion process, parameter estimation, discrete observation, consistency, asymptotic normality

Abstract

This paper is concerned with the parameter estimation problem for a class of diffusion process from discrete observations. The approximate likelihood function is given by using a Riemann sum and an Itˆo sum to approximate the integrals in the continuous-time likelihood function. The consistency of the maximum likelihood estimator and the asymptotic normality of the error of estimation are proved by applying the martingale moment inequality, Holder’s inequality, Chebyshev inequality, B-D-G inequality and uniform ergodic theorem. The results are applied to the hyperbolic process.

References

Y. A¨ıt-Sahalia, Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation

approach, Econometrica. 70(2002), 223-262.

. M. Barczy, G. Pap, Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion

processes, Journal of Statistical Planning and Inference. 140(2010) 1576-1593.

. B. Bibby, M. Sørensen, Martingale estimation functions for discretely observed diffusion processes, Bernoulli, 1-

(1995) 017-039.

. J. P. N. Bishwal, Parameter estimation in stochastic differential equations, Springer-Verlag, London, 2008.

. F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81(1973), 637-

. J. Y. Chang, S. X. Chen, On the approximate maximum likelihood estimation for diffusion processes, The Annals of

Statistics, 39(2011) 2820-2851.

. J. Cox, J. Ingersoll, S. Ross, An intertemporal general equilibrium model of asset prices, Econometrica, 53(1985)

-384.

. J. Cox, J. Ingersoll, S. Ross, A theory of the term structure of interest rates, Econometrica, 53(1985) 385-408.

. L. Galtchouk and V. Konev, On sequential estimation of parameters in semimartingale regression models with

continuous time parameter, The Annals of Statistics, 29(2001), 1508-1536.

.W. Gu, H. Wu, H. Miao, H. Xue, Parameter estimation for a type of nonlinear stochastic models observed with error,

Computational Statistics and Data Analysis, 79(2014) 113-119.

.M. Kessler, Estimation of an ergodic diffusion from discrete observations, Scandinavian Journal of Statistics,

(1997) 211229.

.N. R. Kristensen, H. Madsen, S. B. Jørgensen, Parameter estimation in stochastic grey-box models, Automatica,

(2004) 225-237.

.Y. A. Kutoyants, Statistical Inference for Ergodie Diffusion Processes, Springer-Verlag, London, 2004.

.B. Lucien and M. Pascal, Rates of convergence for minimum contrast estimators, Probability Theory and Related

Fields, 97(1993), 113-150.

.F. Longstaff, The valuation of options on yields, Journal of Financial Economics, 26(1990) 97-122.

.B. L. S. Prakasa Rao, Statistical Inference for Diffusion Type Processes, Arnold Publishers, London, 1999.

.K. Ramaswamy, S. Sundaresan, The valuation of floatingrate instruments, Journal of Financial Economics, 17(1986)

-272.

.Y. Shimizu, Notes on drift estimation for certain non-recurrent diffusion processes from sampled data, Statistics and

Probability Letters, 79(2009), 2200-2207.

.M. Uchida, N. Yoshida, Adaptive estimation of an ergodic diffusion process based on sampled data, Stochastic

Processes and their Applications, 122(2012) 2885-2924.

.O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5(1977) 177-188.

.J. H. Wen, X. J. Wang, S. H. Mao and X. P. Xiao, Maximum likelihood estimation of McKeanCVlasov stochastic

differential equation and its application, Applied Mathematics and Computation, 274(2015), 237-246.

.Chao Wei and Huisheng Shu, Maximum likelihood estimation for the drift parameter in diffusion processes,

Stochastics: An International Journal of Probability and Stochastic Processes, 88(2016), 699-710.

.N. Yoshida, Robust M-estimation in diffusion processes, Annals of the Institute of Statistical Mathematics, 40(1988)

-820.

.N. Yoshida, Asymptotic behavior of M-estimator and ralated random field for diffusion process, Annals of the

Institute of Statistical Mathematics, 42(1990) 221-251.

.N. Yoshida, Estimation for diffusion processes from discrete observations, J. Multivar. Anal, 41(1990) 220-242.

Downloads

Published

2017-12-27
Share |