ORDER STATISTICS OF GEOMETRIC DISTRIBUTION

Authors

  • Chaobing He

DOI:

https://doi.org/10.53555/eijms.v4i2.25

Abstract

This paper mainly studies the order statistics of geometric distribution. The paper deduces the joint frequency function  and  conditional  joint  frequency  function  of  the  order  statistics,  and,  obtain  and  prove  some  important propositions of order statistics of geometric distribution. Certain propositions are different from and also similar to corresponding propositions of exponential distribution.

 

References

. T. S. Ferguson. A characterization of the geometric distribution. American Mathematical Monthly, 72(3):256–

, 1965.

. Thomas S. Ferguson. On characterizing distributions by properties of order statistics. Sankhy: The Indian Journal

of Statistics, Series at (1961-2002), and 29(3):265–278, 1967.

. E. B. Fosam and D. N. Shanbhag. Certain characterizations of exponential and geometric distributions. Journal of

the Royal Statistical Society, 56(1):157–160, 1994.

. Fernando L ́opez Bl ́azquez and Bego ̋na Salamanca Mi ̋no. A characterization of the geometric distribution

.Statistical Papers, 39(2):231–236, 1998.

. A. C Dallas. A characterization of the geometric distribution. Journal of Applied Probability, 11(3):609–611, 1974.

. Henrik Cobbers and Udo Kamps. A note on characterizations of the geometric distribution. Journal of Statistical

Planning & Inference, 67(2):187–190, 1998.

. Gaoxiong Gan and Lee J. Bain. Some results for type i censored sampling from geometric distributions. Journal of

Statistical Planning& Inference, 67(1):85–97, 1998.

. A. Y. Yehia and A. N. Ahmed. Two characterizations of geometric distributions. Microelectronics Reliability,

(6):833–843, 1993.

. R Dodunekova. Characterization of the geometric and exponential random variables. Communications in

Statistics, 33(8):1755–1765, 2004.

. M Doostparast and J Ahmadi. Statistical analysis for geometric distribution based on records. Computers &

Mathematics with Applications, 52(6):905–916, 2006.

. E. Gmezdniz. Another generalization of the geometric distribution. Test, 19(2):399–415, 2010.

. Subrata Chakraborty and Rameshwar D. Gupta. Exponentiated geometric distribution: Another generalization of

geometric distribution. Communications in Statistics, 44(6):1143–1157, 2015.

. Nan Cheng Su and Wan Ping Hung. Characterizations of the geometric distribution via residual lifetime. Statistical

Papers, 59(1):57C73, 2018.

Downloads

Published

2015-06-27
Share |