INVERSE DOMINATION IN SOME OPRATIONS ON BIPOLAR FUZZY GRAPHS

Authors

  • Saqr H. AL-Emrany Department of Mathematic, faculty of Art and Science University of Sheba Region, Mareb, Yemen
  • Mahiuob M. Q. Shubatah Department of mathematics, faculty of Science and Education, AL-Baydaa University, AL-Baydaa, Yemen

DOI:

https://doi.org/10.53555/eijms.v6i1.50

Keywords:

Bipolar fuzzy graph, inverse domination number

Abstract

In this paper the concept of inverse domintion in some operations on bipolar fuzzy graphs was introduced and investigated the bound of γ8 of some operations on bipolar fuzzy graphs are obtained like union, join,Cartesian product, strong product and composition.

References

M. Akram,”Bipolar fuzzy graphs”, Information sciences, 181, (2011), 55485564.

M. Akram and W. A. Dudek, ”Regular bipolar fuzzy graphs”, Neural Computing and Applications, 1, (2012), 197-

M. Akram, ”Bipolar fuzzy graphs with applications”, Knowledge Based Systems, 39, (2013), 1-8.

M. Akram, W. A. Dudek and S. Sarwar, ”Properties of bipolar fuzzy hypergraphs”, Italian J. Pure Appl. Math. 31,

(2013), 426–458.

M. Akram and Rabia Akmal, ”Certain operations on bipolar fuzzy graph”,Structures applications and applied

Mathematics, An International Journal, 11(1), (2016), 443-468.

J. John Stephan, A. Muthaiyan and N. Vinoth Kumar,” domination in operations on intuitionistic fuzzy graphs”,

International Journal of Computer Applications, 96(20), (2014), 1-5.

G. S. Domke, J. E. Donbar and L. R. Markus, ”The inverse domination number of a graph”, ARS combinatoria, 72,

(2004), 149-160 .

S. Ghobadi, N. D. Soner and Q. M. Mahyoub, ”Inverse dominating Set in fuzzy graphs”, Journal of Proceedings of

the Jangjeon Mathematical Soci ety, 11(1), (2008), 75-81.

F. Haray, ”Graph theory”, Addison Wesley, Third printing, October,(1972).

V. R. Kulli and S. C. Sigarkanti, ”Inverse domination in graphs”, reprint extract from: Nat. acad. Sci. Letters, 14,

(1991), 473-475.

M. G. Karunambigai, M. Akram, and K. Palanivel, ”domination in bipolar fuzzy graphs”, International conference

on fuzzy systems, (2013), 7-10.

A. Kaufman, Introduction a La Theorie des Sous- emsembles Flous, Paris, Masson etcie Editeurs, (1973).

R. Parvathi and G. Thamizhendhi, “domination in intuitionistic fuzzy graphs”, Fourteenth Int. Conf. on IFSs, Sofia,

NIFS,16 (2), (2010), 39-49.

A. Rosenfeld, Fuzzy graphs, In. L. A. Zadeh, K. S. Fu and M. Shimura, (Eds). ”Fuzzy Sets and their Applications”,

Academic Press, (1975), 77-95.

A. Somasundaram and S. Somasundaram, ”Domination in fuzzy graphs-I”,Pattern Recognition Letters, 19, (1998),

-791.

A. Somasundaram, ”Domination in fuzzy graphs-II”, Journal of FuzzyMathematics, 20, (2000), 281-289.

A. Somasundaram, ”Domination in products of fuzzy graphs”, Inter, Jornal of Uncertainty fuzziness and KnowledgeBased systems, 13(2), (2005), 195204.

D. Umamageswari and P. Thangaraj, ”Domination in operation on bipolar fuzzy graphs”, International Journal of

Computational Research and Development (IJCRD), 2(2), (2017), 56-65.

W. R. Zhang,”Bipolar fuzzy sets and relations”, A computational framework for cognitive modeling and multi agent

decision analysis, Proceedings of IEEE. Conf. (1994), 305-30

Downloads

Published

2020-12-27
Share |