PARAMETRIZATION OF ALGEBRAIC POINTS OF LOW DEGREES ON THE AFFINE CURVE Y2 = X5 + 1442
DOI:
https://doi.org/10.53555/eijms.v7i1.57Keywords:
Planes curves - Degree of algebraic points - Rationals points - Algebraic extensions – JacobianAbstract
In this work, we determine a parametrization of algebraic points of degrees at most 3 over Q on curve C of affine equation y2 = x5 + 20736. This result extends a result of S. Siksek and M. Stoll who described in [4] the set of Q-rational points on this curve.
References
P. A. Griffiths, Introduction to algebraic curves, Translations of mathematical monographs volume 76. American Mathematical Society, Providence (1989).
O. Sall, Points algébriques sur certains quotients de courbes de Fermat, C. R. Acad. Sci. Paris Ser. I 336 (2003) 117-120.
O. Sall, M. Fall, C. M. Coly, Points algébriques de degré donné sur la courbe d’équation affine y2 = x5 + 1, International Journal Of Development Research Vol. 06, Issue, 11, pp. 10295-10300, November, 2016.
S. Siksek, M. Stoll, Partial descent on hyperelliptic curves and the generalized Fermat equation x3 + y4 + z5 = 0, Bull. London Math. Soc. 44 (2012) 151-166.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 EPH-International Journal of Mathematics and Statistics
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.