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Abstract:-

This paper provides a new lifetime distribution model named as Compound Rayleigh Lifetime Distribution -I which is
derived from Rayleigh distribution by imposing the restriction on the distribution of its parameter towards obtaining the
properties of fine tuning manoeuvres and shift process in mean which is useful in reliability and statistical quality control
analysis. The theoretical results obtained are illustrated with appropriate practical example.
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INTRODUCTION

The thrust of the present paper is to emphasize and bridge a cause and effect relationship between these two aspects of
industrial practice. Based on process capability analysis, and the effects of certain trial and error fine-tuning manoeuvres
on the part of the producer, leading to certain shifts in process mean (target value), the lifetime distribution of the
manufactured product will no more adhere to the conventional models like exponential, gamma, Weibull, etc., discussed
in the literature. The results obtained in this paper pertain to the derivation of a new lifetime model taking into
consideration such modifications and manoeuvres. The properties of this model so derived is useful in reliability and SQC
analysis.

The theoretical results obtained are illustrated with appropriate practical example.

1. COMPOUND DISTRIBUTIONS

In applications of statistics, one generally has some apriori information regarding variation in one or more of the
parameters of the probability model under consideration such variation also is specified by means of a probability
distribution on an appropriate support. When this information about the parameter(s) is made effective and is super
imposed on the basic model, and the probability density function is derived, as a marginal, the resulting distribution is
termed as the compound distribution of the basic model.

2. Compound Rayleigh lifetime distribution (CRLD) Model -I
Basic assumptions required for the derivation of the model are
1. The lifetime (T) of a product is Rayleigh with density f'(t) given by

e -
—e ; O<t<om,
f{f} = }[Ql = (31}

0 . elsewhere.
The measurable quality characteristic X of the product is normally distributed with mean p and variance 2 i.e., X ~ N (u,
62), in which, 62 is known.
Let U, L represent the upper and lower specification limits prescribed by the designing department. Based on the
observation of the production process over time, suppose it is concluded that U-L > 6 o, implying that the process is
capable of producing better products, meeting the specifications.
Under this framework, suppose the manufacturer decides to relax certain constraints on the process by fine-tuning the
operations of either one or more of the three M’s (material, men and machines).
2.  The shift in p resulting out of fine-tuning follows uniform distribution in [[ Iy, [1y], where

u=U-30and [I.-L+3 (3.2)

It can be observed that the greater the shift in p which results in a greater deviation from the process mean p,, will cause
areduction in the lifetime of the product. This, in turn, results in a reduction in the expected lifetime of the product.

3. The shift in p resulting out of fine-tuning follows uniform distribution in [y, pw], where
o =U-3¢ and i =L+ 36 (3.2)
It can be observed that the greater the shift in u which results in a greater deviation
from the process mean .. will cause a reduction in the lifetime of the product. This, in

turn, results in a reduction in the expected lifetime of the product.

4. The increase in the absolute deviation of u from i, results in an increase in the reciprocal
V2/n 6! of the expected lifetime and, the same is represented by the relation

V2/m 6! = c+mU, wherec,m=>0 (3.

L
Lad
—

where U=|u—po| which represents absolute deviation of u from ..
Lemma 1.1: The variation in the random variable U is specified by the probability density function (pdf)
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function (pdf)

[==1 -
| O 0<u<o,
g*(u) = « : (3.4)
0 elsewhere,
where § =271 (pv — po).
Proof: From the Assumption 3, the pdf of p is
[(p, — Ll < U< -,
g[“) — ﬁ;“"I'I_ "LL} "l'L !"t !"EL (35}
elsewhere,

Let, o be the target value. Then we have o= (v + pr)/2.
Probability of p lying between (uc, [lo) is same as probability of p lying between (1o,
uv) and is equal to Y2 . Then we can aobtain

du
g*(u) du =P(ur<p< UOJAWLP(HO{M‘:HU] _du —.

o /e U a

For0<u<©6. Hence. the pdf of Uis given by

. St 0<u<d,
g(u) =
0 elsewhere.

Theorem 1.1: The distribution of the lifetime T under the framework as explained above, is given by the compound
distribution with density f*(t) as

- nf ’-_-_PH.S- 12‘)_|l _&21.2‘,.,.5—5'] o ) ~
F40) = '{“”‘” a2t I e (3.6)

0 . elsewhere.

“

Proof Using the Lemma 1.1, and affecting the transformation
2/nc'=c+mU=V (say), then we have

f oy — o
:{J}?c)} Vo cxvec+md,

f1v) =1 (3.7)

0 : elsewhere.

From the theory of compound distributions, one has the joint density function of V and T, h (v, t) of the compound
distribution as

h(v.t) = A(v).f(tv)

f 2 O<tf<on
s l (2mo }_1 g fyie FAY < ; )
= c<v<c+md, (3.8)
l“ 0 ; elservhere.

Thus, the lifetime density of T in (3.6) is obtained as the marginal density, byintegrating h(v, t) w.r.t. v, in the appropriate
range.
Note: The pdf f*(t) can also be expressed in terms of incomplete gamma distribution function I, as follows
S0 = 2md) ' 2 w2 [[(3/2,01) - T(3/2,02)]; 0<t<[1,
0 ; elsewhere. (3.9) where
o =t?c?n4! and 2=t (c +md)2n 4! (3.10)
However, for convenience, the form (3.6) is adopted throughout the paper.
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Lemma 1.2: The function f*(t) defined in (3.6) is a proper probability density function. Proof: Follows from (i) f*(t)
should be non-negative, which is obvious, since the integrand in f*(t) is positive as ¢, m, & are positive. (ii) Total
probability is given by
= Ce+mé o
I = jf*(ﬂ df = j(fa:c?}_l } J' fTh':E_Ie'f"""”]f.-’*n}dr =1
] 0 L ¢
PROPERTIES OF CRLD MODEL -1

w

Lemma 1.3: The expected value of T for CRLD model - T is given by
E*(T) = (m8)! log [1 +mdcl]. (4.1)

Proof: From the definition of mathematical expectation, one has

2 4 '-E _
e I v dt

.
= |

v

w .
EX(T) = Tr £ de =(moy? [t “‘ ;
0 0| ]
By changing the order of integration, and E*(T) on simplification yields (4.1).
Lemma 1.4 For all m. =0, the expected lifetime of the CRLD model-I iz less than the
expected lifetime ¢! of the Rayleigh distribution.

Proof From (4.1).

I mé'_

E*(T) = (md)™ log (1 +mdc™) < — .
mé ¢

since log (1+x)<x for x=0 (4.2)
Hence. the assertion.
Lemma 1.5: The variance of CRLD model-I s
VHT) = [A(me(crmd))] - [(md)? (log(1+mde )] (4.3)
Proof: V*(T)=E*(T?)—(E*(T))’. one has

EH(T2) = l‘f ) dt= [Fz (md)! J a2 e gy dt
D 0

==
&

By changing the order of integration

E*(T?) = (md)™ f 4(v* 1y T(2) dv =4(n ¢ (c + mB))™ (4.4)

(3

From (4.1) and (4.4), we can obtain
VHT) = [4(me(ctmd))!] - [(m8)~ (log(1+mde1))].

Lemma 1.6: The distribution function F*(t) of the CRLD model-I 15 given by
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F¥(1) = l(mdt) " ¢ | e 0" “do (4.3)

where @1, @2 are as in (3.10).

Proof F*(t)= [ fx)dx = _:{::m{?)"- [ﬁf’?mﬂ2-32-“'*“’"{::&-1'&&
o 1] =

£
By changing the order of integration and x*v* w'4 =v, dy = 2xv* n'4 dx, one has

c=md Ewrad
FXT) =md)? |[»'27 | |e72dp("m)7 |av

]

o R

= (mb)! [ 1=t |dy

c

Let o=t v' 14 sothat do=2tvrd™" dv

F*(T) = (m8)™ mé~{(md) [ e®2da(tn) ™ () (4a)1?

&

=1—(m&t)" () 1?2 J‘ e o' do

Note: An alternative form for the distribution function of CRLD-I can be expressed as
Fx(t) = 1-(mdt)! o2 [T(1/2, o1) - T(1/2, @2)]

EXAMPLE 4.1: The case of manufacturing piston rings for an automotive engine by using certain forging process
(Montgomery (1991), pp.206) is taken for the purpose of illustration of the theory developed in the preceding sections.
The inside diameter of the ring manufactured by the process is the measurable quality characteristic X, assumed to be
normally distributed with mean p, variance o>. The upper and lower specification limits U and L, respectively, are U =
75 mm, L = 73 mm with the process, the target value p,= 74.001 mm and the estimated value of ¢ = 0.00989 mm.

Thus, the process is observed to use up only about 60% of the specification band.

Using the theory of modified control charts the following values are obtained.

pu = 7497033 mm, pr = 73.02967 mm and 6 = 0.97033 mm

Table 4.1: Expected Lifetime of the CRLD model - I

ISIE 1 15 2 25 3 | MED=
05 1-3;9-7 1.11161 | 0.9369 | 0.8169 | 0.7252 | 0.6596 2
1 0-E§}15 06989 | 0.6171 | 0.555 | 05075 | 0.4684 1
15 0-—?? 05141 | 04659 | 04277 | 03966 @ 03705 | 0.6666
2 ‘J'-i“ 0.4076 | 03756 | 03494 | 03274 | 03085 0.5
25 | 0365 | 03379 | 03152 | 0.2960 | 0.2795 | 02652 04

e
3 0-—108 02888 | 02717 | 02570 | 02442 | 02329 0.3333

From the table 4.1, it can be observed that the values of expected lifetime under CRLD-I is smaller when compared to that
(M) of the Rayleigh lifetime distribution. It can also be observed rate of this fall in the expected lifetime is decreasing as
either each of ¢ or m is increasing (along rows and along columns).

f*, F*, f, F represent the characteristics density function and distribution function for CRLD model - I and conventional
Raleigh Lifetime Distribution respectively and are tabulated in Tables 4.2 for the example considered. Further, their
respective graphs are also presented in Graphs 1, 2
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Table 4. 2: CRLD model - I and Rayleigh Distribution

C=0.50000 and m= 1.00000 ¢=1.50000 and m=1.500000

t f* F* f F f* F* f F
0.1 0.13395 0.033 0.0392 0.002 0.416 0.05 0.347 0.0175
0.2 | 0.190884 | 0.06 0.0779 0.007 1.2533 | 0.064 0.6581 | 0.0682
0.3 | 0.433576 | 0.115 0.1157 0.0178 1.580 0.2895 | 0.9043 | 0.147
0.4 | 0.49762 0.1570 | 0.1521 0.0305 1.5654 | 0.483 1.065 0.2462
0.5 | 0.586889 | 0.2155 | 0.1869 0.0479 1.350 0.618 1.1351 | 0.357
0.6 | 0.683729 | 0.2812 | 0.2194 0.0689 1.0636 | 0.7375 | 1.1228 | 0.4705
0.7 | 0.71647 0.3195 | 0.2496 0.0912 | 0.782 0.82 1.0402 | 0.5791
0.8 | 0.68932 0.4058 | 0.2769 0.1187 [ 0.5369 | 0.88 09127 | 0.6771
0.9 | 0.682633 | 0.4646 | 0.3013 0.147 0.3496 | 0.928 0.7605 | 0.7608
1 0.6248 0.524 0.3226 0.178 0.2092 | 0.96 0.6043 | 0.829
2 0.16894 0.896 0.3581 0.5432 | 0.0001 | 0.999 0.006 0.9991
3 0.03527 0.988 0.2013 0.8299 | 40 91 0 1
4 0.00658 0.9961 | 0.068 0.956 0 1 0 1
5 0.00083 0.9997 | 0.0145 0.9927 |0 1 0 1
6 0.000088 | 0.9996 | 0.002 0.9996 |0 1 0 1
7 5.6E-063 | 0.9999 | 0.0002 0.9991 0 1 0 1
8 3.22E- 91 0 91 0 1 0 1
9 070 1 0 1 0 1 0 1
10 0 1 0 1 0 1 0 1
15 0 1 0 1 0 1 0 1
20 0 1 0 1 0 1 0 1
25 0 1 0 1 0 1 0 1
30 0 1 0 1 0 1 0 1
35 0 1 0 1 0 1 0 1
40 0 1 0 1 0 1 0 1
45 0 1 0 1 0 1 0 1
50 0 1 0 1 0 1 0 1
60 0 1 0 1 0 1 0 1
70 0 1 0 1 0 1 0 1
80 0 1 0 1 0 1 0 1
90 0 1 0 1 0 1 0 1
10 0 1 0 1 0 1 0 1
150 | 0 1 0 1 0 1 0 1
200 [0 1 0 1 0 1 0 1

0

GRAPH 1
3 Comparision of Density function (CRLD-I and Rayleigh)
2.5
2
——f*,¢=0.5; m=1.0
1.5 —a—f*; ¢=1.5; m=1.5

f* c=2.5;m=2.0

1 / E ; f: ¢=0.5; m=1.0
0.5 - v —=—fc=1.5;m=15

\ S ——f, c=2.5,m=2.0
O .

D AR PRSP

Volume-10 | Issue-2 | June, 2024



GRAPH 2

—— F*: c=0.5: m=1.0

= F* c=1.5 m=15
F* c=2.5m=2.0

F;c=0.5, m=1.0
—=—F;c=1.5 m=1.5

—s— F: c=2.5m=2.0

Comparision of Distribution function (CRLD -l and
12 Rayleigh) |
1 7 i s -
2l
N,
0.4
1

0.2 f
D _I_I T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1

— 0 W0~ O N =S O 0 O 90O 90 O o o o O

S o o o o t— 8o F O~ o v

3. CONCLUSIONS

Generally, any manufacturer would like to relax the conditions imposed on material, machines and men in a situation

where there is a possibility of doing so, viz. U-L > 6c.

In the process, one may ignore the effect it has on the lifetime of the product, in terms of the product reliability. This, in
turn, leads to loss to the customer and to the manufacturer in terms of the number of complaints on warranty period.
Hence, a proper lifetime distribution to be used under situation would be the compound lifetime distributions rather than

the conventional one.
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