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Abstract:-

This paper propose a new modified differential operator for solving third-order boundary value problems into
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L. INTRODUCTION
In this research, we will introduce Boundary Value Problems of the form

YW= flxyy, e > 1, (1)

With one of the following conditions
1(0) = coy’ (0) = c1,...y"(0) = cu, " ™(b) = d, 2)
Wao) = boy' (a1) = bi,... )" ™(an) = b,y ™(0) = h,y"(0) = di. (3)

Where f is a differential operator of linear or non-linear order less than (n+2) and m = 0 or m = 1, and
ao,ai,...,An Co,Cl,...,Cn,h,d,dy1,b,bo,by,...,b, are constants.

Numerical solutions of higher order boundary value problems has not re ceived a full concern of research as in literature
[1, 8,9, 14, and 15]. There are many evidences that indicate to the presence and distinctiveness of these problems which
deserve to be subjected to a further studies as it is shown clearly by [13]. According to Dirichlet, Neumann or Robin states
or circumstances of the modified decomposition method, numerous kinds of boundary value problems were solved
through many works by Adomain [11, 12] as well as Adomain and Rach [10]. Numerical and analytical solutions of Breatu
equa tion were actually attained when Deeba et al [8] had used Adomain method. The solution of boundary value problems
with Dirichlet and Neumann states or circumstances were obtained through making use of Adomain method by Wazwaz
[3,6]. In addition, certain solutions for non-linear boundary value problems were come into existence by a trustworthy
algorithm offered by Wazwaz [4]. The achievement of the flow up solutions by mixed boundary circumstances has been
Wazwaz’s additional strong confirmation that has demonstrated the reliability and trustworthiness of decomposition
method use Wazwaz [5]. The use of decomposition method by Wazwaz [7] was ac tually proved by giving the numerical
outcomes that were of the fifth order boundary value problems and the use of the sixth—degree B-spline method showed
also its efficiency in making a noticeable attainment in displaying the differences and similarities (contrast) between the
errors. According to the numerical outcomes given by Wazwaz for the purpose of demonstrating the use of decomposition
method, and the use of sixth—degree B-spline method, it becomes so clear those numerical outcomes indicate that
decomposition method was more accurate and easy than B-spline method. This study re veals a real possibility of using
new modification of the (MADM) which is suggested and offered in this study as a validate, and reliable modification
by which the standard difficulties of (ADM) could be faced and tackled for solving of higher-order boundary value
problems under various Kinds of dif ferent conditions to solve an equation at more than one condition. Gener ally, what
can be briefly said about (MADM) as a final authenticate results of this study as a modified form of (ADM) that
demonstrates its strength in giving a proven evidence for solving higher-order boundary value prob lems. The ideal way
of successful application for MADM which also shows its meaningful, and accurate use by creating a canonical form
which includes all boundary circumstances or conditions where extra calculations are not necessary to specify the zeroth
component and other component obviously.

I1. ANALYSIS OF THE METHOD

We provided the new differential operator L, for study the eq.(1),
—1 dm+1 m—+2 d —m—1 dn_‘m
. - ™

L()=u dem it drt dxn—m () “4)

We can write eq.(1) as
Ly =foey 'y 70, (5)

under one of the conditions (2) and (3), for two inverse operators L' are given respectively as

NS Ca g i

n+2) times
(n—m) m+l (6)
— / / / / m+l /JV. —m—2 / / / ([1 dr...drx. (7)
”2 an—1 an
u+2) times
(n—m) (m+l
Applying L™! on both sides (5), we give
&) = a(x) + L iy, h), (8)

where a(x) which represent the term comes out from conditions. The Adomain decomposition method provided the
solution y(x) by an infinite series of components

Z Ynl(:

n=0 (9)
and the non-linear f{x,,)°»%,....»D) by an s infinite series of polynomials

flz,y, 'y, ym Z A,
n=0 ) (10)
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where y,(x) of the solution y(x) and 4, are Adomain polynomials [2]. By

n

1 d" ~
A, =——|N Ny, n=20,1,2, ...,
n!d\n [ (Z Y )]A:OV " (11)

1=0

which gives

Ao = N(yp)
A = ;1/117\/”(?/0)~

. ol
Ay = yoN'(y0) + y%“’”(!/o%

. . 31
As = ysN'(yo) + n1y2N"(yo) + ’.Ufg—,A‘“ "(yo)
, (12)

Substituting from eq.(9) and eq.(10) into eq.(8), we have
o0 oo

Z Yn(z) = afz) + L1 Z Ap, (13)
n=I() n=I()
the components y, can be specified as

Yo = a(x),
Yny1 = L 144711 n = 01
Which gives
Yo = o(x),
Yy =L 1‘41)-.
Yys = L 1441:
ys = L ' Ay,

(14)

Addition the plan (14) with (12) can enable us to determine y,(x) and hence the series solution of y(x) defined by (9)

follows directly. For numerical use the n—term approximate
n—1

On = Z Yk
k=0 , (15)
can be used to approximate the exact solution. The approach above can be support by testing it on a variety of several
linear and nonlinear BVP.

\III. NUMERICAL EXAMPLES

In this part, we will discussing for example, when n=1,2,5, in a differential operator (4). We apply the introduces
algorithm on two third order nonlinear boundary value problems at m=0& m=1, two fourth order non-linear boundary
value problems at m=0 & m=1 and one seventh order non-linear boundary value problem at m=0& m=1 and in every one
case two boundary conditions.

3.1 Example
At n=1 and m=0, we give non-linear equation of third order:
Y () =y = p(e+x) +e, (16)
with one of the following condition:
1
y(0) = Ly'(0) = 2,¥/(5) = 2.65

The exact solution is y(x) = e*+ x.
Re-written eq.(16), as
Ly=y*=ye+x)+e, (17)

of an operator (4), give
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o d 5 d 1 d

L)=a do” dz dz”

of two inverse operators, under one of the followmg condition, respectlvely

r
/ / x? / x(.) dedxdz,
Jo

T xr T
= / x / 2 / x(.) dedxdr.
JiJ3 Jo

Applying L' on both sides of (17), respectively we get
Y(x)=1+2x+0.65x2 + ex + L—1y2 — L-1y(ex + x),
Y(x)=1.07 +2x + 0.65x2 + ex + L—1y2 — L—1y(ex + x),

using ADM for yz(x) as yleld
Z Yn(z) =14 22+ 0.652% + " + L~ Z A, — L'y (e® +2),n >0,

n=0 n=0

> yo(x) = 1.07 + 22 + 0.652° + " + L~ ZA,,—L Yn(e® +2),n >0

n=0 n=0 s

we obtain the relative formal
yo=1+2x+0.491279x%+ 0.166667x> + ... +2.755731077 x'°,
o= 1.00044-+2x+0.501279x2+0.166667x*+0. O416667x4+ 42 7557310’7x1°,
ynt+l=L-14n — L—1yn(ex + x),n >0,
employing Adomain polynomial 4,, for 32, when n=0,1,2, gives

Ay = ’yffa
Ay = 2YoY1,

the first few components are as follows, respectively )
1 = 0.0000752066 2 — 2.77556 1017 2* — 1.38778 10 ' 2* — 0.000145355 2°

+...41.0094110 " 2

yp = —5.7863210 7 22 + 1.25344 10 % 2° + 1.2534410 6 2% + 1.7281710 7 27
fo. +5.2864910 7 20

y1 = —0.0000751438 — 0.0000855731 22 + 0.0000732726 2>+
0.0000366202 2* + ... +1.4921210 ®
Yo = 7.1956 10° + 0.0000132446 2% — 0.000012535 z* — 6.26198 10 ¢ 24
+...+9.44112107 8 »1°
the solution in a series from are given by
y(7) = Yoty +ya = 142 2+0.491353 22 4+0.166667 2°4+0.0416667 x*+0.00818923 2°
+0.00124479 2° + 0.000178183 2" + 0.0000200803 z® + 1.17574 10 % 2°
+... +3.59999 10 '8 4%,
y(x) = yo + y1 + yo = 1.00037 + 2.2 + 0.501206 2* + 0.166727 2*
+0.041697 2*4-0.00140989 2°+0.000202205 27 4-0.0000258045 2°+-3.05884 10 ¢ z*
L3, 88708 107 575,
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Table 1. The comparison of Exact solution y(x) = e*+ X, and Approximate solution

X Exact MADN Absolute | MADN Absolute
solution at Error at Error
the first the second
condition condition

0.0 | 1.00000 1.00000 0.00000 1.00037 0.00037
0.1 | 1.20517 1.20508 0.00009 1.20555 0.00037
0.2 | 1.42140 1.42106 0.00034 1.42182 0.00042
0.3 | 1.64986 1.64908 0.00078 1.65034 0.00048
04 | 1.89182 1.89044 0.00138 1.89239 0.00057
0.5 | 2.14872 2.14655 0.00217 2.14940 0.00068
0.6 | 2.42212 2.41899 0.00313 2.42294 0.00082
0.7 | 2.71375 2.70947 0.00428 2.71475 0.00100
0.8 | 3.02554 3.01992 0.00562 3.02674 0.00120
0.9 | 3.35960 3.35243 0.00717 3.36104 0.00144
1.0 | 3.71828 3.70932 0.00896 3.72000 0.00172

14

12

10

10 1.4 16 18 2 23 2.4
| — Exact — | MADM —— MADM
Figure 1: Showing the representation of the approximate solutions which is very close to the exact solution y(x) = e* + x,
We note from the graphical and table above shows approximate solutions that is a lot very close to exact solution.
Therefore the method is very quickly to get exact solution.

3.2 Example
In the same case, we give example for non-linear equation of third order:
Y=y = (18)
under one of the following condition:
1 1
y(0) =0,y(0) =0, ;’1/(5) =1

y(1) = 1.y(0) = 0.4/(0) =0,
The exact solution is y(x) = x%. From an operator (4), when m=1,n=1, we have
& ,d .
L()=a'—a’—a7?(.
(- dz?  dx ( )
Re-written eq.(18), as
Ly=y'=x", (19)

of two inverse operators, respectively

L) =2" /'I z /I /‘I z(.) dedxdr,
i 0 Jo

L7'() = 2? /II 3 /DI /OI x(.) dedxdx.

Applying L™ on both sides(19), respectively we give
y(x)=x2 — L-1x6 + L—1y3,
y(x)=x2 — L-1x6 + L—1y3,
using ADM for y(x), as yield ,
o0 ) o0
Z Yn(z) = 2% — L7 '2% + L7} Z A,,n>0
n=0 n=0

the components for y,(x) introduces the recursive relation, respectively
o =1.00002x2— 0.00198413x°,
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yo=1.00198x>— 0.00198413x°,
yn+l =L—-14n,n >0,

employing Adomain polynomial 4,, for )*, we have the first few components as follows, respectively
y1=1.00002x% - 0.00198413%°,
y=-0.0000155016x>+ 0.00198422x°
—1.77161070x'0+ 1.111471072 x% — 3.206510713 x*,

y3=—4.0410410"" x>+ 6.5082310712x° + 2.723571079 x>

+.. +2.2519510718 x4,
»1=0.0000101238x2— 0.0000119173x° + 1.796271076 x!®

+.. +2.13649107"x*,
¥2=0.0000101238x2— 0.0000119173x° — 2.74695107° x*

+..+2.136491071 x*,
y3=1.x?+2.437571078 %% — 7.28896107° x'0+...2.056610718 x*4,

The first terms, the approximate is following, respectively
Y(x) = yotyityrtys = x2+1.43069107 12 x°-5.4937107 " x'%4+1.1118107° x>
+.. +2.03872107 18 x%,
Y(x) =y = yotyityatys = 1.x242.437571078 x°=7.28896107° x'6+1.15614107° x*3
+.. £2.056610 '8 x*,

Table 2. We formulated the exact solution with the approximate MADM in [0.1,1]

X Exact MADN Absolute MADN Absolute
solution at Error at Error
the first the second
condition condition

0.1 0.01 0.01 0.00 0.01 0.00
0.2 0.04 0.04 0.00 0.04 0.00
0.3 0.09 0.09 0.00 0.09 0.00
0.4 0.16 0.16 0.00 0.16 0.00
0.5 0.25 0.25 0.00 0.25 0.00
0.6 0.36 0.36 0.00 0.36 0.00
0.7 0.49 0.49 0.00 0.49 0.00
0.8 0.64 0.64 0.00 0.64 0.00
0.9 0.81 0.81 0.00 0.81 0.00
1.0 1.00 1.00 0.00 1.00 0.00

7

6

5

4

3

2

1

-2 -1 1 2
—— Exact— | MADM —— MADM

Figure 2: Showing the representation of the approximate solutions which is very close to the exact solution y(x) = x2.
Obviously, the former example, we have the exact solution. Thus the good method and its effectiveness.

3.3 Example
At n=2& m=0, we study non-linear equation of fourth order:
Y=, (20)
with one of the following condition:
1
y(0) = 0,5/(0) = 1,y"(0) = 1,y/(5) = 1.65

1
y(=) = 0.6787,y/(=) = 1.3956,y" (1) = 2.7183, 4" (0) = 1
2

1
3
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The exact solution is y(x) =" — 1.
From an operator(4), we get
aqd o ,d &

Re-written eq.(20), as
Ly=0")=n" @D

of two inverse operators, respectively

L) :/ /I/x—? /II(.) drdzdzds,
0 Jo 3 0

L) =/‘ /1/ :(:_2/ x(.) dedrdrdz.
; /3 1 0

Applying L™ on both sides (21), we get
y(x) =x+0.5x2+ 0.22x° + L1 = L%, p(x) = 0.045 + 0.9668x + 0.5x% + 0.2864x> + L1(3°)? — L 1%,

employing ADM for y*(x), as yield

Z Yn(z) = 2+ 0.52° + 0.222° + L™ Z Ay — L'y n >0

n=>0 n=0 s
> ya(x) = 0.045+0.96682 4 0.52° +0.28642° + L™ > A, — L™ 'yy,n > 0
n=0 n=0 s

the components for y,(x) introduces the recursive relation, respectively
yo=x+ 0.5x2+ 0.22x,
0= 10.045 +0.9668x + 0.5x> + 0.2864x°,
Va1 =L7'An — L Yy,y",n >0,

applying Adomain polynomial 4,, for the non-linear term (3°)%, when for n=0,1,2, gives
Ag = yS
Ay = 2yoy1,

Ay = 4} + 2ypye,
we get,

1 " 1 152
y1=—L "yoyo + L (%)
y2 = —L 'yl + L' (2y0u)),
the first few components as follows, respectively
y1 = —0.0497335 2* + 0.0416667 =* + 0.00833333 2% 4 ... + 0.0000864286 x°,

gz = 0.0000645216 & — 0.000143682 27 + ... + 0.0000232251 &',
gy = —8.85146 1077 2% 4+ 1.07536 1070 2% + ... + 3.2344210 7 210,

1 = —0.00444651 + 0.0328041 = — 1.0407510 7 2% + ... 4+ 0.000146473 25,

Yo = —4.20624 10 % +0.0000323662 = —0.000112691 2* + ... 4 3.31524 10 7 20,

The first terms, the approximate solution is following

y(x) = yotm+yatys = 2+0.5 2240.170331 2°4+0.0416667 x*+0.00833333 27+

0.00138889 2°% 4 0.000380127 =" + 0.0000641907 =° + 9.26112 10 % 2*
o+ 19272210 12 219,
y(x) = Yoty +y2 = 0.000049288+0.999636 24-0.5 22 +0.169045 2*4+0.0388033 x*
+0.00796616 2” 4 0.00139463 £° 4 0.000676696 27 + 0.000169569 x°
—9.24522 10 27 +3.31524 1077 2194+-2.88628 107z +...+2.33708 102 218,
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Table 3. Comparison between Exact solution y(x) =¢*— 1, and

MADM
X Exact MADN Absolute | MADN Absolute
solution at Error at Error
the first the second
condition condition

0.1 | 0.105171 | 0.105171 | 0.000000 0.105186 0.000015
0.2 | 0.221403 | 0.221432 | 0.000029 0.221394 0.000009
0.3 | 0.349859 | 0.349958 | 0.000099 0.349839 0.000020
0.4 | 0.491825 | 0.492060 | 0.000235 0.491805 0.000020
0.5 | 0.648721 | 0.649181 | 0.000046 0.648700 0.000021
0.6 | 0.822119 | 0.822916 | 0.000797 0.822080 0.000039
0.7 | 1.013750 | 1.015030 | 0.001280 1.013660 0.000090
0.8 | 1.225540 | 1.227470 | 0.001930 1.225350 0.000190
0.9 | 1.459600 | 1.462390 | 0.002790 1.459250 0.000350
1.0 | 1.718280 | 1.722200 | 0.003920 1.717730 0.000550

12

10

8

6

4

2

1—=7.% 0.5 1 1.5 2 2.5
| — Exact — | MADM —— MADM

Figure 3: Comparison between Exact solution and MADM

We see of tables and fingers above that clearly the MADM is precise, more dynamic and converges to the exact

solution.

3.4 Example

When n=2, we give example for non-linear of fourth order:

under one of the following condition:

P =52

1
y(0) = 1,5'(0) = =1,4"(0) = 1,9/(5) = —0.61

1

y(5) =061,9(1) =

2

—0.37,1/(0)

The exact solution is y(x) = e™*. From an operator (4), m=1, we get

Re-written eq.(22), as

Ly=e%?,

of two inverse operators, respectively

3
., d

L(.)==x

‘3(_1,, p

72 B
dx? v ([Il () dzx.

2

=—1,4"(0) =1

d

(23)

L) = /0 " /] e /J ’ /0 ’ x(.) dedrdzdr,
3

L) =

Applying L' on both sides(23), we give
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/I x? /I 3 /I /I x(.) drdxdzrde.
3 1 0 Jo

Y =1-x+0.52 02135+ L7le%? y(x) = 1.0004 — x+ 0.5~ 0.123x* + L 'ey?,




employing ADM for y*(x), as yield
S yu(z) =1—2+052" - 01232 + L' Y e"A,,n >0

n=>0 n=>0 s
00

> yn(x) = 1.0004 — x + 0.52% — 0.1232° + L' Y e"A,,n >0

n=0 n=0 )

the components for y,(x) introduces the recursive relation, respectively
yo=1—x+0.5x>— 0.123x3,
yo=1.0004 — x + 0.5x%— 0.123x%, y
n+tl =L-1lexAnn >0,

the first few components as follows, respectively
y1=—0.0246058x>+ 0.0416667x* — 0.00833333x° + ... + 1.503751077 x'°,
2= 4.64566107° x3~0.0000585853x7+0.0000496032x3+...+1.00356 1076 x'°,
y1=0.00315959 — 2.2144610 ¥ x — 4.70573107 8 x>+ ... + 1.017061077 x'°,
2= 1.00001-+x+0.5x%+0.166444x3+0.0419301x*+...+5.3390110 ¥ x'°,

The first terms, the approximate solution is following
Y(x) = yoryity2 = 1-x+0.5x2-0.237601x*+0.0416667x*+...+1.27397107°
x'% y(x) = yotyi+y2 = 1.00357—x+0.5x*—0.167435x>+0.0419648x*+...+5.1325410710 x4,

Table 4. Comparison between Exact solution y(x) = ¢, and MADM

X Exact MADN Absolute | MADN Absolute
solution at Error at Error
the first the second
condition condition

0.1 | 0.904837 | 0.904766 | 0.00007 0.908408 0.00357
0.2 | 0.818731 | 0.818163 0.00057 0.822297 0.00367
0.3 | 0.740818 | 0.738903 0.00192 0.744372 0.00355
0.4 | 0.670320 | 0.665780 | 0.00454 0.673850 0.00353
0.5 | 0.606531 | 0.597663 0.00887 0.610025 0.00349
0.6 | 0.548812 | 0.533485 | 0.01533 0.552256 0.00344
0.7 | 0.496585 | 0.472241 0.02434 0.499965 0.00338
0.8 | 0.449329 | 0.412975 | 0.03635 0.452629 0.00330
0.9 | 0.406570 | 0.354780 | 0.05180 0.409777 0.00321
1.0 | 0.367879 | 0.296778 | 0.07110 0.370980 0.00310

—1 -0.5 0.5 1
| — Exact— | MADM —— MADM |

Figure 4: Comparing between Exact solution and MADM

In the same way, we got the results of the exact solution, its excellentmethod.

3.5 Example
This example from seventh order, we show tow cases for a differential operator (4), at m=0 and m=1, with one conditions
(2) or (3). The first case,
W =1+ =y (24)
with one of the following condition:
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y(0) = 1,5/(0) = 1,3/"(0) = 0,5(0) = 0,4™(0) = 0,5®(0) = 0,5™(1) = 0,
1 1 1 1 -l
y(1) =2,9(5) = 1.y"(3) = 0.3"(3) =0, y(“’(g) =0,y7(z) = 0,5
With the exact solution y(x) =x + 1.

From an operator(4) at m=0 and n=5, we have

v d o5 d d

L()=z'—a>—a'—(.
) dr dx d;17“( )

Re-written eq.(24), as
Ly=(1+xy>-)3 (25)

of two inverse operators, respectively

1 o " " "r T " €T ’ _9 xr N ’ ) ’ /
L~() = /0 /0 /0 /0 /0 r/l x /o x(.) dedrdrdrdrdrdr,
L) = /r /I /.m /Jr /Jr x /T x? /T x(.) dedrdrdrdrdrdr.

BTk

Applying L™ on both sides (24), we give respectively
yE)=1+x+ LY (1+x)>-L"3

employing ADM for 33(x), as yield -
Sypla) =14+ L '1+z)’—L"> A,n>0

n=0 n=0 s

the components for y,(x) introduces the recursive relation, respectively

yo=1+z+L '(1+2)°

s = —L Ay 0 2 0,
the first few components as follows, respectively
Yo = 1 + 2 — 0.00180556 2° + 0.000198413 27
+0.0000744048 2® + 0.0000165344 2° 4+ 1.65344 109 219,
g = 0.00180518 2°5—0.( 98413 ="' —0.( 4048 2%+ ... 4+1.95306 20
yy = 0.00180518 2°—0.000198413 2" —0.0000744048 2:° 1.95306 1014 220,
o ='8.76522 107 =¥ — 6.2617210 0 1 ... + 3.00471 10 220,
yo = 0.999827 + 0.999994 2z — 1.95044 10 % 2? + ... + 1.65344 10 ¢ 21,
y; = 0.00017307 + 5.6969510 ®z + 1.94954 10 ®2* + ... + 8.711410 % 27,
Yo = 7.42729107° + ... + 3.8880210 % 2™,
The first terms, the approximate solution is following

y(x) = Yo+ +ye = 1+2—0.0018048 2°4+-0.000198413 =" +...+9.85861 10 *% 2,

y(z) = Yo+ 4y = 1.4+1. 2—5.20394 10 ** 2%4-8.71935 10 1° 1 +...+3.88892 10 z°,

3
2
=2 =1 1
-1
— Exact — | MADM —— MADM

Figure 5.1 Comparing between Exact solution and MADM
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We will study the same example at m=1, with one of the following conditions and difference differential operator

y(0) = 1,4/(0) = 1,4"(0) = 0,4 (0) = 0,5™(0) = 0,4 (0) = 0,5 (1) =0,

1 3 2 1 1 ) ‘ 5
¥(5)=5.¥(3) =1Ly"(7) = 0.y"(z) = 0,y(1) = 0,47 (0) = 0,y(0) = 0
From an operator (4), we get
d? . d d*
L) =a"'—a*—z2()—
() =z 22" dr ( )dlf‘i,

of two inverse operators respectively

//// / “/0/ ) drdrdrdrdedrdz,
/ L 52 [ o) doasasavastuas,

and the same way, we get the first few components as follows
yo = 1 4+ = — 0.000972222 2% + 0.000198413 =" + ... 4+ 1.65344 10 5 z'°

y1 = 0.000972185 2°—0.000198413 27 —0.0000744048 2%+ ... +8.7114 10 % 2*7
Yo = 7.5857 10 926 337227107028 + . +411310738 %

=~

Yo = 0.999765+1.00049 2—0.0000549137 2240.00014302 2°+...+1.65344 10 ¢ 21°,

y1 = 0.000234648 — 0.000487628 2 + 0.0000549036 2% + ... +4.12376 10 & 2

2o = 3.76026 1078 — 7.8743510 % x + 1.179710 8 2 + ... + 54573210717 2%
The first terms of the approximate solution is following
y(x)=yo+y+ye =1+ —49163610 2% + ... + 411310 * 2™,

y(x) = yo+yr+yz = L4+1. 24+1.6881310 ?2*—4.38757 10 2°+...45.60133 10 ™ =%,

S 1 2 3 4
| — Exact— | MADM —— MADM
Figure 5.2 Comparing between Exact solution and MADM

The approximate solutions of the Figure 5.1 and the Figure 5.2 which is very close to the exact solution. Therefor the
method is very effective.

IV. CONCLUSION

This is method beneficial, active and we can get it in simple ways. It is noticed that when we use this method, we can get
an accurate results and sometimes the exact solution. We have also found out that this method has a real efficiency and
it can be developed and used to find out the solutions the differential operator of the inverse operator by boundary
conditions in general. It is also noticed from those illustrative examples, we can get an approximate solution by using an
illustrative Tables and Figures.
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