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Abstract:-
Our goal in this paper is to compare and evaluate the accuracy and efficiency between the Volterra and Fredholm integral 
equations of the second kind with initial condition. We followed the Adomian Decomposition method and series solution 
method, and we found that the two methods in terms of accuracy in the solution also we found that the Adomian 
Decomposition method gave us the more accurate solution than the other method, so the Adomian Decomposition method 
it’s the best one method.
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1. INTRODUCTION
The emergence of the theory of integral equations was the need for mathematicians to address some of the problems in 
mathematical engineering and the problems of vibrations in mechanics. He was the first to write in this field a veto Volterra 
in the late 19th century AD where he laid the basic concepts of this theory but he had no way to solve. This paved the way 
for Fredholm in 1900 to give a solution to these integral equations, especially nonlinear ones.The Volterra-Fredholm 
integral equations ([12] and [5]) arise from parabolic boundary value problems, from the mathematical modelling of the 
spatio-temporal development of an epidemic, and from various physical and biological models. The Volterra-Fredholm 
integral equations appear in the literature in two forms, namely

(1)
and the mixed form

(2)

where f(x) and K(x,t) are analytic functions. It is interesting to note that (1) contains disjoint Volterra and Fredholm 
integrals, whereas (2) contains mixed Volterra and Fredholm integrals. Moreover, the unknown functions u(x) appears 
inside and outside the integral signs. This is a characteristic feature of a second kind integral equation. If the unknown 
functions appear only inside the integral signs, the resulting equations are of first kind. Examples of the two types of the 
Volterra-Fredholm integral equations of the second kind are given by

(3) and (4)

2.Volterra Integral Equations of Second Kind
We will first study Volterra integral equations of the second kind given by

(5)
The unknown function u(x), that will be determined, occurs inside and outside the integral sign. The kernel K(x,t) and the 
function f(x) are given real-valued functions, and λ is a parameter. In what follows we will present the methods, new and 
traditional, that will be used.

2.1 The Adomian Decomposition Method
The Adomian decomposition method appears to work for linear and nonlinear differential equations, integral equations, 
integro-differential equations. The method was introduced by Adomian in early 1990 in his books [1] and [2] and other 
related research papers [3] and [4] The method essentially is a power series method similar to the perturbation technique. 
We shall demonstrate the method by expressing u(x) in the form of a series:

) (6)
with u0(x) as the term outside the integral sign.
The integral equation is

(7)

and hence
u0(x) = f(x) (8)

Substituting equation (6) into equation (7) yields

(9)

The components u0(x),u1(x),u2(x),··· ,un(x),··· of the unknown function u(x) can be completely determined in a recurrence 
manner if we set
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(10)

and so on. This set of equations (10) can be written in compact recurrence scheme as

0 (11)
It is worth noting here that it may not be possible to integrate the kernel for many components. In that case, we truncate 
the series at a certain point to approximate the function u(x). There is another point that needs to be addressed; that is the 
convergence of the solution of the infinite series. This problem was addressed by many previous workers in this area (see 
Refs. [10] and [9]). So, it will not be repeated here. We shall demonstrate the technique with an example.

Example 2.1. Solve the following Volterra integral equation:

(12)
Solution:
We notice that f(x) = 1,λ = 1,K(x,t) = t − x. Substituting the decomposition series (6) into both sides of (12) gives

(13)

or equivalently

(14)

that gives

(15) and (16)

and so on. The solution in a series form is given by

(17)
and in a closed form by

u(x) = cosx

obtained upon using the Taylor expansion for cosx.

2.2 The Series Solution Method
We shall introduce a practical method to handle the Volterra integral equation

(18)
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(19)
In the series solution method we shall follow a parallel approach known as the Frobenius series solution usually applied 
in solving the ordinary differential equation around an ordinary point (see Ref. [13] and [15]). The method is applicable 
provided that u(x) is an analytic function, i.e. u(x) has a Taylors expansion around x = 0. Accordingly,u(x) can be expressed
by a series expansion given by

∞
u(x) = Xanxn (20)

n=0

where the coefficients a and x are constants that are required to be determined. Substitution of equation (20) into the above 
Volterra equation yields

(21)

so that using a few terms of the expansion in both sides, we find

In view of equation (22), the integral equation will be reduced to several traditional integrals, with defined integrals having 
terms of the form tn,n ≥ 0 only. We then write the Taylors expansions for f(x) and evaluate the first few integrals in equation 
(22). Having performed the integration, we equate the coefficients of like powers of x in both sides of equation (22). This 
will lead to a complete determination of the unknown coefficients a0,a1,a2,··· ,an,··· Consequently, substituting these 
coefficients an,n ≥ 0, which are determined in equation (22), produces the solution in a series form. We will illustrate the 
series solution method by a simple example.

Example 2.2. Solve the Volterra integral equation by using the series solution method

(23)
Solution:
Substituting u(x) by the series

into both sides of Eq. (23) leads to

(25)

Evaluating the integral at the right side gives

(26)

that can be rewritten as

(27)

or equivalently

. (28)

Volume-7 | Issue-1 | March, 2021 4



In (26), the powers of x of both sides are different, therefore, we make them the same by changing the index of the second 
sum to obtain (27). Equating the coefficients of like powers of x in both sides of (27) gives the recurrence relation

1 (29)

where this result gives

0 (30)

Substituting this result into (24) gives the series solution:

(31)
that converges to the exact solution u(x) = ex.

It is interesting to point out that this result can be obtained by equating coefficients of like terms in both sides of (28), 
where we find

a0 = 1
(32)

!
This leads to the same result obtained before by solving the recurrence relation.

3. Fredholm Integral Equations of the Second Kind
We will first study Fredholm integral equations of the second kind given by

(33)

The unknown function u(x), that will be determined, occurs inside and outside the integral sign. The kernel K(x,t) and the 
function f(x) are given real-valued functions, and λ is a parameter. In what follows we will present the methods, new and 
traditional, that will be used to handle the Fredholm integral equations (33).

3.1The Adomian Decomposition Method
The Adomian decomposition method (ADM) was introduced and developed by George Adomian in [1], [3], [6] and [7]. 
The Adomian method will be briefly outlined. The Adomian decomposition method consists of decomposing the unknown 
function u(x) of any equation into a sum of an infinite number of components defined by the decomposition series

) (34)
or equivalently

u(x) = u0(x) + u1(x) + u2(x) + ··· (35)

where the components un(x),n ≥ 0 will be determined recurrently. The Adomian decomposition method concerns itself 
with finding the components u0,u1,u2,··· individually. As we have seen before, the determination of these components can 
be achieved in an easy way through a recurrence relation that usually involves simple integrals that can be easily evaluated.
To establish the recurrence relation, we substitute (34) into the Fredholm integral equation (33) to obtain

(36)

or equivalently

The zeroth component u0(x) is identified by all terms that are not included under the integral sign. This means that the 
components uj(x),j ≥ 0 of the unknown function u(x) are completely determined by setting the recurrence relation
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0 (38)

or equivalently

and so on for other components.

In view of (39), the components u0(x),u1(x),u2(x),u3(x),··· are completely determined. As a result, the solution u(x) of the 
Fredholm integral equation (33) is readily obtained in a series form by using the series assumption in (34).
It is clearly seen that the decomposition method converted the integral equation into an elegant determination of 
computable components. It was formally shown that if an exact solution exists for the problem, then the obtained series 
converges very rapidly to that exact solution. The convergence concept of the decomposition series was thoroughly 
investigated by many researchers to confirm the rapid convergence of the resulting series. However, for concrete problems, 
where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical purposes. The 
more components we use the higher accuracy we obtain.

Example 3.1. Solve the following Fredholm integral equation

(40)
Solution:
Proceeding as before we find

(41)
or equivalently

We next set the following recurrence relation

0 (43)

This in turn gives

(44)

and so on. Using (34) gives the series solution

(45)
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We can easily observe the appearance of the noise terms, i.e the identical terms with opposite signs. Canceling these noise 
terms in (45) gives the exact solution

u(x) = cosx (46)

3.2The Series Solution Method
A real function u(x) is called analytic if it has derivatives of all orders such that the Taylor series at any point b in its 
domain

(47)

converges to f(x) in a neighborhood of b. For simplicity, the generic form of Taylor series at x = 0 can be written as

(48)

The series solution method that stems mainly from the Taylor series for analytic functions, will be used for solving 
Fredholm integral equations. We will assume that the solution u(x) of the Fredholm integral equations

(49)

is analytic, and therefore possesses a Taylor series of the form given in (48), where the coefficients an will be determined 
recurrently. Substituting (48) into both sides of (49) gives 

(50)

or for simplicity we use

(51)

where T(f(x)) is the Taylor series for f(x). The integral equation (49) will be converted to a traditional integral in (50) or 
(51) where instead of integrating the unknown function u(x), terms of the form tn,n ≥ 0 will be integrated. Notice that 
because we are seeking series solution, then if f(x) includes elementary functions such as trigonometric functions, 
exponential functions, etc., then Taylor expansions for functions involved in f(x) should be used.
We first integrate the right side of the integral in (50) or (51), and collect the coefficients of like powers of x. We next 
equate the coefficients of like powers of x in both sides of the resulting equation to obtain a recurrence relation in aj,j ≥ 0. 
Solving the recurrence relation will lead to a complete determination of the coefficients aj,j ≥ 0. Having determined the 
coefficients aj,j ≥ 0, the series solution follows immediately upon substituting the derived coefficients into (48). The exact 
solution may be obtained if such an exact solution exists. If an exact solution is not obtainable, then the obtained series 
can be used for numerical purposes. In this case, the more terms we evaluate, the higher accuracy level we achieve.
It is worth noting that using the series solution method for solving Fredholm integral equations gives exact solutions if the 
solution u(x) is a polynomial. However, if the solution is any other elementary function such as sinx,ex, etc, the series 
method gives the exact solution after rounding few of the coefficients aj,j ≥ 0. This will be illustrated by studying the 
following example.

Example 3.2. Solve the Fredholm integral equation by using the series solution method

(52)
Solution:
Substituting u(x) by the series

(53)

into both sides of Eq. (52) gives

(54)

Evaluating the integral at the right side, using the Taylor series of cosx, and proceeding as before we find
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0 (55)

Consequently, the exact solution is given by
u(x) = cosx (56)

4. The Volterra and Fredholm Integral Equations
In this part, we will study some of the reliable methods that will be used for analytic treatment of the Volterra-Fredholm 
integral equations ([12] and [5]) of the form

(57)

4.1 The Adomian Decomposition Method
The Adomian decomposition method [1], [2], [8] and [6] (ADM) was introduced thoroughly in this text for handling 
independently Volterra-Fredholm integral equations. The method consists of decomposing the unknown function u(x) of 
any equation into a sum of an infinite number of components defined by the decomposition series

) (58)

where the components un(x),n ≥ 0 are to be determined in a recursive manner. To establish the recurrence relation, we 
substitute the decomposition series into the Volterra-Fredholm integral equation (57) to obtain

(59)

The zeroth component u0(x) is identified by all terms that are not included under the integral sign. Consequently, we set 
the recurrence relation
u0 = f(x)

Z x Z b
un+1(x) = K1(x,t)un(t)dt + K2(x,t)un(t)dt n ≥ 0 (60)

0 a
Having determined the components u0(x),u1(x),u2(x),···, the solution in a series form is readily obtained upon using (58). 
The series solution converges to the exact solution if such a solution exists. This will be illustrated by using the following 
example.

Example 4.1. Use the Adomian decomposition method to solve the following VolterraFredholm integral equation
Z x Z 1

ex + 1 + x + (x − t)u(t)dt − ex−tu(t)dt (61)
0 0

Solution:
Using the decomposition series (58), and using the recurrence relation (60) we obtain

(62)
and so on. We notice the appearance of the noise terms ±1 and ±x between the components u0(x) and u1(x). By canceling 
these noise terms from u0(x), the non-canceled term of u0(x) gives the exact solution

u(x) = ex (63)
that satisfies the given equation.

4.2 The Series Solution Method
The series solution method was examined before in this text . A real function u(x) is called analytic if it has derivatives of 
all orders such that the generic form of Taylor series at x = 0 can be written as

(64)
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In this part we will apply the series solution method ([11] and [14]), that stems mainly from the Taylor series for analytic 
functions, for solving Volterra-Fredholm integral equations. We will assume that the solution u(x) of the Volterra-
Fredholm integral equation

(65)

is analytic, and therefore possesses a Taylor series of the form given in (64), where the coefficients an will be determined 
recurrently. In this method, we usually substitute the
Taylor series (64) into both sides of (65) to obtain

or for simplicity we use

(67)

where T(f(x)) is the Taylor series for f(x). The Volterra-Fredholm integral equation (65) will be converted to a regular 
integral in (66) or (67) where instead of integrating the unknown function u(x), terms of the form tn,n ≥ 0 will be integrated. 
Notice that because we are seeking series solution, then if f(x) includes elementary functions such as trigonometric 
functions, exponential functions, etc., then Taylor expansions for functions involved in f(x) should be used.
We first integrate the right side of the integrals in (66) or (67), and collect the coefficients of like powers of x. We next 
equate the coefficients of like powers of x into both sides of the resulting equation to determine a recurrence relation in 
aj,j ≥ 0. Solving the recurrence relation will lead to a complete determination of the coefficients aj,j ≥ 0. Having determined 
the coefficients aj,j ≥ 0, the series solution follows immediately upon substituting the derived coefficients into (64). The 
exact solution may be obtained if such an exact solution exists. If an exact solution is not obtainable, then the obtained 
series can be used for numerical purposes. In this case, the more terms we evaluate, the higher accuracy level we
achieve.

Example 4.2. Solve the Volterra-Fredholm integral equation by using the series solution method

(68)
Solution:
Using the Taylor polynomial for ex up to x7, substituting u(x) by the Taylor polynomial

(69)

and proceeding as before leads to

(70)

Equating the coefficients of like powers of x in both sides of (70), and proceeding as before we obtain

(71)
The exact solution is given by
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u(x) = xex (72)

Results
After we solved the Volterra and Fredholm integral equations of the second kind with initial condition, we compared 
between the two solutions and we found that: The Adomian Decomposition method is straightforward to implement in 
the analysis test cases considered leads to very significant improvement in accuracy and also (ADM) has main advantages 
such as simplicity, high accuracy and if the solution it exists it found in a rapidly convergent series form.

Conclusion
In this paper we solved and compared between two analysis method of Volterra and Fredholm integral equation of the 
second kind using the (ADM) and the (SSM). In most contemporary studies involving Volterra and Fredholm integral 
equations some projection methods are being developed with the old of interpolation projections and approximation theory 
here we considered the (ADM) for these equations and explained that this method is straightforward to implement and in 
the analysis test cases considered leads to very significant improvement in accuracy also we gave a bound for (ADM) 
series and the efficiency and effectiveness.
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