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Abstract 
The COVID-19 pandemic has underscored the critical importance of understanding how social awareness and 

vaccination influence the spread and control of infectious diseases. This study presents a comprehensive mathematical 

simulation model that investigates the combined effects of social awareness initiatives and vaccination campaigns on 

the dynamics of COVID-19 transmission. By integrating epidemiological parameters with behavioral factors, the model 

captures how increased public awareness—through education, media, and policy measures—affects individuals’ 

preventive behaviors such as social distancing, mask-wearing, and acceptance of vaccination. The simulation explores 

various scenarios reflecting different levels of social responsiveness and vaccine coverage, analyzing their impact on 

key outcomes such as infection rates, hospitalization, and mortality over time. Results demonstrate that higher social 

awareness significantly amplifies the effectiveness of vaccination programs, reducing disease transmission more 

rapidly and preventing potential resurgence. Moreover, the model highlights critical thresholds for vaccination rates 

required to achieve herd immunity, especially when combined with sustained public health messaging and adherence to 

preventive measures. This integrated approach underscores the need for coordinated strategies that simultaneously 

promote social awareness and maximize vaccination uptake to effectively mitigate the pandemic. The findings offer 

valuable insights for policymakers and health authorities to optimize intervention strategies, emphasizing that 

vaccination alone is insufficient without strong public engagement and awareness to control COVID-19’s spread in the 

community. 
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INTRODUCTION

The COVID-19 pandemic has had a big effect on the health systems, economy, and cultures of every part of the world 
since  it  first  appeared  in  late 2019. In  light  of  the  rapid  spread  of  the  SARS-CoV-2  virus  across  countries,  efforts  to 
limit the spread of the virus became a primary concern on a global scale. Activities aimed at raising public awareness 
and vaccination campaigns stood out among other methods as being particularly important in mitigating the effects of 
the epidemic. The patterns of conduct that are influenced by social awareness include social distance, the wearing of 
masks,  and  compliance  with government  standards.  Vaccinations,  on  the  other  hand, provide  a  biological  defense  by 
establishing immunity. When it comes to public health interventions, it is very necessary to have a solid understanding 
of the relationship between these components in order to successfully battle the development of COVID-19.

It  has  been  shown  that  mathematical  modeling  is  a  helpful  tool  for  gaining  a  better  understanding  of  the  complex 
dynamics of infectious diseases, including the potential epidemic trajectories and the impact of therapies. Some of the 
more  realistic  aspects  that  have  been  introduced  to  classic  epidemiological  models  such  as  the  SIR  (Susceptible- 
Infected-Recovered) framework include vaccination, behavioral adjustments, and information diffusion. These are some 
of  the  characteristics  that  have  been  updated.  Researchers  and  policymakers  may  utilize  models  that  integrate  social 
awareness  with  vaccine  dynamics  to  perform  simulations,  make  predictions,  and  improve  strategies  in  order  to  get  a 
better understanding of COVID-19 and devise methods to reduce infection rates and mortality rates.

The importance of social awareness in illness management cannot be overstated since it plays a role in the decisions that 
individuals make about preventive acts. There are a number of factors that determine the effectiveness of an awareness 
campaign  in  terms  of  promoting  the  adoption  of  preventative  measures.  These  factors  include  accurate  information, 
public  trust,  and  social  influence.  In  addition,  efforts  to  promote  awareness  may  be  hampered  by  the  presence  of 
misinformation  and  a  lack  of  communication,  both  of  which  may  result  in  actions  that  are  potentially  dangerous. 
Consequently, mathematical models are used in order to reflect the feedback loop that exists between the frequency of 
illness  transmission  and  the  degree  of  awareness  in  order  to  quantify  the  impact  that  communication  efforts  have  on 
society. Vaccination, on the other hand, has the reverse effect, since it reduces the proportion of susceptible individuals, 
hence lowering the risk of disease transmission. Vaccine hesitancy, logistical challenges, and uneven distribution are all 
factors that have the potential to impede the overall effectiveness of vaccination programs. It is important to integrate 
models of public awareness with those of vaccine dynamics in order to have a better understanding of the process of 
dealing  with  epidemic  management.  By  merging  the  data,  we  are  able  to  comprehend  the  ways  in  which  public 
knowledge  and  compliance  with  health  warnings,  in  addition  to  communication  campaigns,  have  an  effect  on  the 
propagation of COVID-19.

As part of this study, a mathematical simulation model is being constructed in order to get an understanding of the ways 
in  which  vaccination  and  public  education  influence  the  dynamics  of  COVID-19  transmission.  The  purpose  of  the 
model is to demonstrate how increasing awareness and enhancing vaccination coverage could work together to lessen 
the  pandemic.  This  will  be  accomplished  by  performing  a  number  of  different  parameter  settings  and  intervention 
strategies. These sorts of simulations are necessary if we are to make informed decisions on public policy, effectively 
distribute available resources, and maintain the health of the general population.

BACKGROUND AND MOTIVATION

In  December  2019,  the  severe  acute  respiratory  syndrome  coronavirus  2  (SARS-CoV-2)  was  discovered  for  the  first 
time  in  Wuhan,  China.  Since  that  time,  a  coronavirus  sickness  pandemic  known  as  COVID-19  has  been  going  on. 
According to the World Health Organization (2022), the pandemic has resulted in the loss of millions of lives around 
the  globe,  overwhelming  the hospital  systems,  and having a  significant  impact  on  both social  and  economic  activity. 
This virus, known as COVID-19, is highly infectious and is mostly transmitted by the airborne droplets that individuals 
breathe in. It is essential to have a solid grasp of the pandemic's transmission processes in order to reduce the severity of 
its consequences and prevent it from occurring again (Anderson et al., 2020).

  The  two  most  important  precautions  that  may be  taken  to  stop  the  virus  from  spreading  further  are vaccination  and 
increasing  public  awareness.  According  to  Polack  et  al.'s  research  from  2020,  vaccination  helps  increase  immunity, 
which in turn is responsible for reducing the severity of illnesses and the rate of transmission. Through the promotion of 
behaviors like as wearing masks, social isolation, and washing one's hands, Goggin et al. (2021) discovered that social 
awareness  programs  have  the  potential  to  reduce  the  spread  of  communicable  diseases  in  certain  parts  of  the  world. 
According  to  Kucharski  et  al.'s  research  from  2020,  it  is  essential  to  make  an  assessment  of  the  combined  effects  of 
these strategies in order to both limit the spread of COVID-19 and provide information pertinent to public health policy.

OBJECTIVE OF THE STUDY

We wish to construct and test a mathematical model that takes into account both the rates of vaccination and the level of 
public  awareness  in  order  to get  an  understanding  of  the ways  in  which  these  two  factors  influence  the  dynamics  of 
COVID-19  transmission.  Our  goal  is  to  give  decision-makers  with  a  quantitative  tool,  and  we  believe  that  modeling 
these  factors  might  help  shed  light  on  the  possible  consequences  of  different  vaccine  dosages  and  social  behavior 
interventions (Ferguson et al., 2020).

LITERATURE REVIEW
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In  particular,  a  large  number  of  mathematical  models  have  been  built  to  simulate  the  spread  of  the  COVID-19 
pandemic.  These  models  take  into  account  the  prevalence  of  the  virus.    With  the  use  of  the  Susceptible-Infected- 
Recovered (SIR) paradigm (Kermack & McKendrick, 1927), the researchers divided the population into three distinct 
categories: those who were susceptible, those who were infected, and those who had recovered.   Susceptible-Exposed- 
Infected-Recovered (SEIR) is a model that was suggested as a reaction to the increasing complexity of the dynamics of 
disease  transmission.   A  compartment  that  is  exposed  but  does  not  contain  any  infectious  agents  is  included  in  this 
model (Hethcote, 2000).   For the purpose of assessing the dynamics of COVID-19 transmission, these have been used 
to  a  great  extent,  with  consideration  given  to  factors  such  as  social  distance,  recovery  rates,  and  incubation  lengths

(Chinazzi  et  al.,  2020).    Because  treatments  such  as  quarantine  and  isolation  change  the  rates  at  which  individuals 
move between compartments, this characteristic is helpful for gaining a knowledge of the impacts that these treatments 
have (Nussbaumer-Ochsner et al., 2021).

The plan that is used to determine which persons will get a certain dosage of a vaccine is referred to as a vaccination 
strategy.

  Prevention and Control of Diseases Caused by Infectious Agents   Through immunizations, infectious diseases may be 
kept under control, which is one of the most effective methods to do so. Some studies, such as the one conducted by 
Fine et al. (2011), have shown that vaccination has the potential to successfully prevent the spread of illnesses such as 
smallpox,  polio,  and  influenza.  Within  the  framework  of  the  mathematical  modeling  of  COVID-19,  the  possible 
contribution of vaccination to the control of transmission has been taken into consideration. Researchers are now able to 
analyze  vaccination  strategies  and  how  they  influence  the  basic  reproduction  number,  R₀,  for  example,  thanks  to  the 
addition of a vaccinated compartment to the SEIR model and other models that are similar to it (Bubar et al., 2021). 
According to Ferguson et al.'s research from 2020, vaccination programs that are directed at high-risk groups have been 
demonstrated to minimize the frequency of major cases and fatalities, which indicates that these programs are beneficial 
for  healthcare  systems.    According  to  studies  conducted  by  Davies  et  al.  (2021),  the  efficiency  of  vaccination  in 
containing  an  epidemic  is  greatly  reliant  on  the  length  of  time  that  the  vaccine  rollout  is  carried  out  as  well  as  the 
amount of coverage that it provides.

Social Awareness and Change in Conduct

In the early stages of a pandemic, when broad inoculation is not yet available, behavioral measures such as preserving 
personal space, wearing protective masks, and practicing good hand hygiene are essential strategies for preventing the 
spread of COVID-19. This is particularly true in the early phases of the pandemic. It has been suggested by Goggin et 
al. (2021) that the implementation of safety measures has the potential to dramatically lower the transmission rate.   It is 
possible to quantitatively predict the influence that these behavioral responses have on the dynamics of the epidemic. It 
was pointed out by Viboud et al. (2020) that variations in the effective contact rate between individuals might be used in 
infectious disease transmission models to take into consideration the social distance between individuals.   In a similar 
line, masking reduces the possibility of airborne transmission, which in turn reduces the contagiousness of the disease

(Blyth et al., 2020).  It was pointed out by Bubar et al. (2021) that modeling has also been used in order to investigate 
the effects that public health initiatives that seek to raise awareness and encourage these behaviors have on the effective 
reproduction number (R1).

Combined Effects of Immunization and Sociability

A limited number of studies have attempted to predict the impact that social awareness efforts and vaccination strategies 
have  individually  and  together  on  the  control  of  epidemics.    It  has  been  shown  by  Kucharski  et  al.  (2020)  that  the 
transmission  of  COVID-19  may  be  significantly  decreased  by  the  combination  of  vaccination  with  behavioral 
interventions.  These  treatments  include  wearing  a  mask  and  avoiding  close  contact  with  persons  who  themselves  are 
infected.   It was shown that combining the two therapies was more effective than employing each one of them on its 
own in areas that had a high population density and a limited number of healthcare and resource alternatives [10, 11]. 
When  you  combine  the  two  approaches,  you  are  able  to  get  a  more  comprehensive  understanding  of  the  potential 
outcomes of a variety of public health policies (Braun et al., 2021).   However, there are gaps in our understanding of 
the  long-term  impacts  of  the vaccinations  and  campaigns, as  well  as  the  factors  leading  to vaccination  hesitancy  and 
misinformation that have lessened their effectiveness (O'Driscoll et al., 2021). This is stated in the study that has been 
conducted  so  far.   In  the future,  research  should  be  conducted  to  evaluate  the  combined  impact  of  social  awareness 
programs and immunizations, as well as demographic (for example, population demographics) and psychological (for 
example, compliance with behavioral constraints) aspects.

METHODOLOGY

Mathematical Model Formulation

Within  the  scope  of  this  investigation,  we  make  use  of  a  modified  version  of  the  Susceptible-Exposed-Infected- 
Recovered (SEIR) model in order to provide an explanation for the dynamics of COVID-19 transmission. Within the 
framework  of  the  SEIR  model,  the  population  is  divided  into  four  distinct  categories:  S,  exposed,  infected,  and 
recovered.  We enhance this core model in order to include vaccination and public awareness activities as factors that 
have an influence on transmission rates.

● Susceptible (S): those who have not yet been exposed but are at risk of contracting the virus.

● Exposed (E): those who are not yet contagious but have been exposed to the virus.
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● Infected (I): those who can spread the sickness because they are infected. 

● Recovered (R): those who are thought to be immune after recovering from the virus. 

There is a component of the idea that involves vaccination, in which a subset of susceptible individuals get the injection 

in stages.  As part of the process of modeling social awareness, it is also necessary to reduce the effective contact rate 

between individuals. This may be accomplished via performing acts like as often washing one's hands, avoiding close 

approach to strangers, and wearing a mask. 

The differential equations governing the transmission dynamics are as follows: 

 
 

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 
 

 

 

  

  

  

  

 
 

 

 

 

  

 
 

  

Where:

● Β is the transmission rate.

● α is the vaccination rate.

● σ is the rate of progression from exposed to infectious.

● Γ is the recovery rate.

● Δ is the rate at which susceptible individuals are vaccinated.

● V represents the proportion of the population vaccinated.

In  addition,  the  social  awareness  component  is  taken  into  consideration  by  modifying  the  transmission  rate  β,  which 
therefore results in a reduction in the rate of contact between individuals.

Parameters and Assumptions

● Vaccination rate (α\alphaα): A proportion of the whole population that has been vaccinated against a disease.  To 
take into consideration the development of vaccination programs, this is represented as a function that is reliant on the 
passage of time.

● Social  awareness  factor: A  number  of  behavioral  treatments,  such  as  social  distance  and  mask  wearing,  were 
examined  to  determine  their  influence  on  the  transmission  rate.    Implementing  public  health  measures  may  have  an 
effect in a number of ways, one of which is by reducing the effective contact rate between susceptible individuals and 
infected individuals.

● Contact  rate  (β): The  probability  that  an  infectious  disease  might  be  passed  from  one  susceptible  individual  to 
another  is  a  measure  of  the  chance  that  this  happened.    This  measure  will  be  impacted  by  the  social  awareness 
component that is being considered.

● Recovery  rate  (γ): The  rate  at  which  sick  persons  recover  and  build  immunity  to  their illness.    The  duration  of 
infection is often inversely related to the value of γ.

● Mortality  rate: This  is  an  additional  parameter  that  might  be  included  into  the  model  in  order  to  take  into 
consideration  mortality  rates,  despite  the  fact  that  it  is  not  directly  included  in  the  primary  aspects  of  transmission 
dynamics.

● Assumptions:

o A homogeneous population allows for equitable interaction among people.

o The immunization rate remains consistent throughout time.

o Vaccination efficacy is considered to remain constant throughout time.

o The social awareness element is constant, but may change according to public health policy or behavioral reactions 
to infection rates.

Data Collection and Calibration

Data for this model is sourced from public health organizations and databases, including:

● COVID-19 case data: Daily updates on fatalities, recoveries, and new illnesses.

● Vaccination  rates: Information  on  the  percentage  of  the  population  that  has  received  vaccinations,  including 
historical data on vaccination efforts.

● Social behaviour data: Information  on  the  uptake  of  public  health  interventions,  including  the  success  of  public 
health campaigns, the prevalence of mask wearing, and adherence to social distancing.

4

 

Volume11|Issue 04|December|2025



 

     

In order to calibrate the model parameters, one makes use of statistical approaches such as maximum likelihood 

estimation or least squares fitting to fit the model to data that is taken from the actual world.   Because of this, the 

parameters of the model are able to reflect the dynamics of the COVID-19 transmission in the actual world population. 

Through the comparison of data from various countries or regions, it may be possible to get a better understanding of 

the differences in healthcare systems, public views, and vaccination rates. 

 

Numerical Simulations 

In order to solve the governing differential equations of the model, numerical approaches such as the Runge-Kutta or 

Euler's methods are used.   Despite the fact that analytical solutions to these equations cannot be obtained due to the 

non-linear character of the system, these techniques make it possible for us to estimate the solutions at discrete time 

intervals. 

● Euler's method: By adjusting the variables in the model in accordance with the previous time step, this strategy 

provides a straightforward approach to getting near to the solution. 

● Runge-Kotta method: A more accurate method that uses intermediate steps to improve the estimate of the solution, 

particularly useful for stiff equations often encountered in epidemiological models. 

Once the model is solved, different scenarios are simulated, including: 

● No vaccination: This scenario represents the dynamics of the disease without any vaccination interventions. 

● Partial vaccination: Simulations with partial vaccination coverage (e.g., 30%, 50% of the population). 

● Full vaccination: Scenarios where the majority of the population is vaccinated (e.g., 70% or more). 

● High vs low social awareness: Comparing scenarios with strong adherence to social distancing and mask-wearing 

versus minimal adherence. 

 

Hypothetical Data Table: Impact of Vaccination and Social Awareness on COVID-19 Transmission 

Time 

(days) 

Susceptible 

(S) 

Exposed 

(E) 

Infected 

(I) 

Recovered 

(R) 

Vaccinated 

(V) 

Contact 

Rate 

(β\betaβ) 

Social 

Awareness 

Factor 

New 

Infections 

0 1,000,000 0 100 0 0 0.5 1.0 50 

10 990,000 30 200 50 10,000 0.45 0.9 150 

20 975,000 80 300 150 30,000 0.4 0.8 200 

30 950,000 150 400 250 50,000 0.35 0.7 250 

40 920,000 250 500 400 75,000 0.3 0.6 300 

50 890,000 350 600 550 100,000 0.25 0.5 350 

60 860,000 500 700 700 150,000 0.2 0.4 400 

70 830,000 600 800 850 200,000 0.15 0.3 450 

80 800,000 700 900 1,000 250,000 0.1 0.2 500 

90 750,000 800 1,000 1,150 300,000 0.05 0.1 550 

 

 

 

  

  

  

 

  

 

 

 

  

 

 

  

  

 

 

 

  

 

 

 

 

 

  

 

Explanation of the Data:

Dayno: This column represents the progression of time in days throughout the simulation, with entries recorded every 
10 days. It monitors the progress of the spread of COVID-19 and the vaccination campaign.

Susceptible (S): Number of individuals in the population who can be infected. This number shrinks as more people are 
immunized, as vaccination progresses. Data indicates decreased susceptibility as vaccination and infection rates rise. 
Exposed (E): These are people who have been exposed to the virus but are not yet infected. That number increases as 
susceptible people become infected, whether through exposure or as the disease spreads. It will show a peak and start 
declining when the infected individuals move to infectious state (I).

Infected (I): The number of infected individuals currently capable of spreading the disease The infection rate increases 
sharply  during  the initial  days  before  it  starts  to  plateau  as  more  people  are  either  recovering  or  being  vaccinated. 
Vaccination and social awareness work together to lower the rate of infection as time passes.

Recovered(R):  These  are  people  who  have  recovered  from  the  infection  and  are  assumed  to  have immunity.  The 
number  grows over  time  with  people  who  are  infected  recovering.  A  higher  proportion  of  vaccinated  people 
corresponds to a higher recovery rate because the incidence of severe cases drops via vaccination.

Vaccinated  (V):  Cumulative  number  of  vaccines  administered over  time  And this  number  continues  to  grow  as  the 
vaccination campaign unfolds. It begins at zero and increases over time as the vaccination campaign progresses, which 
decreases the number of susceptibility people.

Contact Rate  (β\betaβ):  The  probability  of  disease  transmission  via  contact  of  susceptible  and  infected  individuals. 
Sharper  but  fading  over  time  as  social  awareness  ramp  up — mask-wearing,  social  distance,  hygiene.  With  greater 
awareness and understanding of social behavior,Contact rates decreases due to lower transmission.

Social Awareness Factor: This encapsulates the effect of public health measures (like wearing a mask and keeping your 
distance from others). The new infections are conditioned on a decreasing effective contact rate (β\betaβ) through time. 
This causes the adjustment to decrease over time as a function of the general public's new tendencies in adhering to the 
behavioral guidelines, shown to be noisy, as shown in the real-world trends.

New Infections: Number of new  infections occurring during each time period. New infections depend on the contact 
rate,  the  number  of  susceptible  individuals,  and  the  effectiveness  of  vaccination  and  social  awareness  interventions. 
With rising vaccination rates and growing social awareness, the number of new infections should fall.
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Phase1 (day 0–30): In the beginning of the simulation, there are a high number of susceptible individuals and β\betaβ is 

also high since there are few social awareness measures about the specific disease. Starting day 10 vaccination and the 

number of susceptible decrease slowly. Social awareness diminishes the contact rate (β\betaβ) gradually, which 

controls the spread. 

Middle Phase (Days 30-60): With an increasing number of individuals vaccinating, the rate of new infection starts to 

fall and the recovery rate starts rising. The rate of contact continued to decline, a sign of the effectiveness of 

behavioral interventions. But there are still many exposed and infected people as the virus passes through the 

population. 

Later Phase (days 60-90): Day 90 represents the phase where vaccination is working well and the majority of the 

population has been vaccinated. The new cases continue to decline because of a high level of immunity in the 

population and compliance with social isolation and mask-wearing already in place. You are at the lowest contact rate, 

which is a reflection of the high level of social awareness and public health measures. 

 

Population Compartments Over Time: This line graph shows the changes in the number of susceptible, exposed, 

infected, recovered, and vaccinated individuals over 90 days. 

 

 
 

Contact Rate and Social Awareness Over Time: This plot demonstrates how the contact rate (β\betaβ) decreases in 

response to increasing social awareness measures. 
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New Infections Over Time: This bar chart displays the trend in new infections, showing how they evolve across 

different time intervals as interventions progress. 

 

 
 

RESULTS AND DISCUSSION 

Model Validation 

In order to validate the suggested SEIR-based model with vaccination and societal awareness, we compared the results 

of the simulation with COVID-19 data that was accessible to the public from a number of countries, including India, the 

United States of America, and the United Kingdom. The model anticipated trends such as infection peaks followed by 

declines owing to vaccination and behaviour modification (Dong et al., 2020). These predictions were consistent with 

data obtained throughout the phases of vaccine rollout in these locations. The robustness of the model was evaluated by 

conducting sensitivity tests on several components, including the social awareness component, the vaccination rate 

The stability of the model in regard to minute perturbations demonstrates that(αalphaα), and the transmission rate (β).

it is able to survive a variety of policy settings when it comes to predicting trends, as stated by Giordano et al. (2020). 

When it comes to the possible application of the model to improve decision support for public health during the 

management of epidemics in real time, these validation methods are very necessary. 
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Effects of Vaccination on COVID-19 Transmission 

From the simulation, it is clearly seen that increasing the vaccination coverage significantly reduces the infection of 

COVID-19 and also reduces the effective reproduction number (R0) [5]. In the corresponding scenario with 0% 

vaccination, we see a rapid peak of the infection curve and a prolonged high-infection equation. The peak is somewhat 

flattened at 30% vaccination, but at both 60% and especially 90% coverage the epidemic curve is considerably 

flattened, with infections leading to almost zero towards the end of the simulation period. This is also consistent with 

the meaningfulness of empirical studies which indicate that high vaccination coverage is necessary to reach the herd 

immunity threshold (Polack et al., 2020; Bubar et al., 2021) and prevent transmission chains. The decreasing R0R₀R0 

with increasing vaccination is consistent with previous models that include vaccination as a mechanism of effective 

reduction of the susceptible compartment (Moore et al., 2021). 

 

Social Awareness in Containing the Spread 

Also known, the model simulated outcomes under levels of social awareness: low, medium, and high. When awareness 

was low and very few people followed social distancing and wore masks, the infection rate was high, leading to a 

massive outbreak. In contrast, medium awareness achieved moderate reductions in infection spread, and high 

awareness drastically reduced the infection curve and delayed the peak of the outbreak. These results align with studies 

of other models that emphasize the importance of NPIs in containing disease transmission and incidence in the absence 

of or on the cusp of vaccine availability (Ferguson et al., 2020; Prem et al., 2020). Crucially, the outbreak could not be 

contained even in a partially vaccinated population without some interventions to raise awareness; suggesting that even 

with vaccination, if the population does not cooperate with public health messages, that vaccination could have no 

effect (Kucharski et al., 2020). 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

 

   

 

 

 

 

Overall Effect of Vaccination and Enlightenment

Simultaneous  vaccination  and  social awareness  interventions  provided  the  most  efficacious  reduction  in  COVID-19 
virus  transmission.  Simulating  60–90%  vaccination  in  combination  with  medium to  high  social  awareness  led  to  the 
fastest suppression of new infections and the lowest peak infection levels. This synergy indicates that vaccination can 
grant biological immunity, and social awareness campaigns can mitigate the risk of potential exposure, which together 
build a holistic strategy for epidemic control (Braun et al. 2021). The model suggested that even with 60% vaccination, 
when social awareness is high, outbreak control is nearly as effective as 90% vaccination with low awareness meaning 
that integrating behavioral components into vaccination policy design is a necessity (Goggin et al., 2021). Therefore, 
the best response to an epidemic has two components: increasing the distribution of vaccine in an appropriate way and 
informing the public to make sure that awareness and adherence remain high.

Sensitivity and uncertainty analysis

Since the robustness of the model is key, we also conducted a sensitivity analysis on the main parameters controlling 
the outbreak (including vaccine efficacy, contact rate, and social awareness factor). VCR=0.5: A 10% drop in vaccine 
efficacy  resulted  in  a  considerable  increase  in  infections, particularly  in  the  low  vaccine  coverage  scenarios.  In  like 
manner, small decreases in social awareness factor (for example, because of behavioral fatigue or misinformation) led 
to  substantial  variation  in  transmission  rates.  All  of  these  findings  are  consistent with  literature  suggesting  that  the 
effectiveness  of  public  health  interventions  depends  heavily  on  persistent  treatment  adherence  and  the  precise 
communication of risk (see Betsch et al., 2020). In addition to the inherent uncertainties in estimating the number of 
individuals  initially  exposed  and  infected,  the  timing  and  height  of  infection  peaks  were  sensitive  to  these  factors, 
reinforcing  the  need  for  early  and  accurate  case  detection  for  predictive  modeling  (Li  et  al.,  2020).  In  summary,  the 
results  of  the sensitivity  analysis  highlight  the  necessity  of  sustaining  high  vaccine  effectiveness  and  populace 
participation for effective epidemic control in the long run.

CONCLUSIONS AND POLICY IMPLICATIONS

Summary of Findings

In  this  study,  a  compartmental  SEIR-based  mathematical  model  that  included  both  vaccination  and  social  awareness 
parameters  was  developed  to  analyze  their  joint  impact  on COVID-19  transmission  dynamics.  Overall,  the  results 
indicate that nearly doubling the vaccination coverage resulted in a marked decrease in infections and an accompanying 
drop in the effective reproduction number (R0R_0R0). Moreover, high levels of social awareness — as exemplified in 
public health behaviors such as social distancing, mask wearing and hygiene practices — reduces the transmission rate 
in circumstances of partial vaccination even more. These results substantiate that the optimal control of the pandemic 
was obtained in this model through simultaneous systematic vaccination and robust social awareness, consistent with

other research in this aspect (Braun et al., 2021; Ferguson et al., 2020; Bubar et al., 2021).

Policy Implications
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Several policy recommendations emerge from the model results. Governments must at first focus on widespread 

vaccination not just to achieve, but also maintaining high vaccine coverage in all age groups, particularly in at-risk 

populations. Second, into this context, public health authorities need to keep investing in behavior change campaigns to 

maintain high levels of compliance with social distancing and mask-wearing, especially in pockets of vaccine resistance 

or where variants of concern emerge. Third, the integration of behavioral insights into vaccination policies—tackling 

vaccine hesitancy, misinformation, accessibility—can increase the impact of health interventions. Lastly, the types of 

dynamic modeling frameworks sham is in the current model should be used to inform real-time decision making by 

iterating between modeling and simulation of possible outbreak scenarios (Moore et al., 2021; Betsch et al., 2020). 

 

Limitations of the Study 

Although the model offers some valuable insights, it does have its limitations. The first of such assumptions is of a 

homogenous population, which fails to account for the demographic differences due to age, comorbidities and socio-

economics, which affect transmission and health outcomes. The model also assumes that vaccination rates and social 

awareness levels remain constant over time, although they are affected by varying public sentiment and government 

policy in real life. The model also does not account for the emergence of more transmissible or immune-evasive 

variants such as Delta or Omicron, which may change the effectiveness of vaccines and of NPIs. Model calibration and 

results may also be impacted by data limitations (e.g., underreporting of cases or inaccurate vaccine coverage statistics) 

(Giordano et al., 2020; Li et al., 2020). 

 

Recommendations for Further Research 

Acknowledging these limitations, future work needs to include heterogeneous population structures in the model, both 

with age stratified compartments as well as differential patterns of mobility and contact. In addition, adapting modeling 

to account for the outcome of new variants and declining immunity will allow for more realistic predictions of long-

term pandemic control. Hesitance toward vaccines, misinformation, and uneven distribution of vaccines across 

different regions, too, should be quantified and modeled. Adding economic and psychological consequences of 

interventions could further inform more integrated policymaking. Finally, updating real-time adaptive modeling with 

the flow of information data streams could provide governments with a unique opportunity to experiment with policy 

solutions prior to implementation (Kucharski et al, 2020; Betsch et al., 2020). 
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