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Abstract
Data security and confidentiality in cryptography depend on mathematical foundations for its implementation. The
examination of cryptographic methods throughout this document explains the role of number theory in RSA and elliptic
curve algebra in ECC and finite field arithmetic in AES. This research explores two post-quantum cryptographic
techniques that employ lattice-based systems and multivariate polynomial systems for their quantum attack defenses. The
assessment investigates how statistical and probabilistic techniques operate in cryptanalysis and shows the difficulties of
finding an appropriate balance between computational depth and system efficiency. Future studies need to prioritize two
aims: establishing quantum-resistant cryptographics along enhancing mathematical security demonstrations while
maximizing the efficiency of cryptographic systems.
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INTRODUCTION
Modern digital times require cybersecurity to be a fundamental concern because data confidentiality and integrity and 
authenticity face growing security threats. Cryptography acts as the fundamental security mechanism for protecting 
important data from cyber criminals and unauthorized interception [1]. Various cybersecurity measures depend heavily 
on cryptography because this field extends its applications into secure communication along with digital signatures and 
blockchain technology structures as well as secure multiparty computation [2].
Complex mathematical principles based on number theory together with algebra and probability and computational 
complexity maintain the security structure of cryptographic techniques. The resistance of encryption algorithms to 
cryptanalysis depends on mathematical problems which include prime factorization as well as discrete logarithms and 
lattice-based hard problems [3]. Recent advancements in intelligent cybersecurity detection and response platforms further 
emphasize the need for strong cryptographic techniques in defending against modern cyber threats [4].
Shor’s Algorithm operating under quantum computing systems provides a major security challenge to traditional 
cryptographic techniques including RSA and ECC. The method of Shor’s Algorithm enables efficient factorization of 
large integers while solving discrete logarithms with polynomial time speed thus violating RSA and ECC's basic security 
foundations [5]. The field requires extensive research on post-quantum cryptography because quantum adversaries 
threaten current cryptographic methods. The design of cryptographic algorithms requires experts to possess advanced 
mathematical skills so algorithms remain secure at the same time they maintain computational efficiency.
The main research goal targets a mathematical evaluation of cryptographic methods. This paper evaluates the fundamental 
mathematical elements of cryptographic algorithm strength through RSA and modern techniques with ECC and lattice- 
based cryptography and code-based encryption schemes [6]. The research will evaluate how statistical and probabilistic 
analysis helps maintain cryptographic protocol security. The study focuses on cryptographic mechanism rigors to advance 
the creation of resilient encryption methods which counter future cybersecurity threats [7].

RESULTS AND ANALYSIS OF CRYPTOGRAPHIC METHODS
1. Mathematical Foundations of Cryptography
Number Theory
Number theory functions as an essential foundation in cryptography because it enables encryption systems with key 
exchange methods. The RSA algorithm depends on prime factorization difficulty to maintain its security status [8]. 
Utilizing modular arithmetic enables different encryption methods such as Diffie-Hellman key exchange and RSA 
encryption to function efficiently and securely [9].

Algebraic Structures
All cryptographic protocols heavily rely on algebraic structures involving groups and rings together with fields. The usage 
of elliptic curves within finite fields serves ECC (elliptic curve cryptography) to deliver safe methods for encryption with 
key generation [10]. Secure communication methods that combine rings and fields enable both coding-based 
cryptographic schemes and error-correcting codes [11].

Probability and Complexity Theory
The cryptographic security proofs heavily depend on probability which defends against attacks. Cryptography depends 
on entropy to measure the unpredictability of keys because this assessment forms the basis for creating secure random 
number generators [12]. Complexity theory establishes the difficulty level of computational problems including NP- 
hardness that serves as a foundation for both lattice-based and hash-based cryptographic security [13].

2. Classical Cryptographic Algorithms and Their Mathematical Basis
RSA Algorithm
The cryptography method RSA uses modular exponentiation together with Euler's theorem. The calculation of modulus
𝑛 requires the two prime numbers 𝑝 =61 and 𝑞 =53 to be used.:

𝑛 = 𝑝 × 𝑞 = 61 × 53 = 3233
The Euler totient function is:

𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1) = (61 − 1)(53 − 1) = 3120
The public key consists of an encryption exponent. 𝑒 such that 1 < 𝑒 < 𝜙(𝑛) and gcd (𝑒,𝜙(𝑛)) = 1. Choosing 𝑒 = 17, the
private key 𝑑 is computed as the modular multiplicative inverse of 𝑒 modulo 𝜙(𝑛) :

𝑑 ≡ 𝑒−1  mod𝜙(𝑛) = 2753
Encryption and decryption are performed using modular exponentiation:

𝐶 ≡ 𝑀𝑒  mod𝑛,  𝑀 ≡ 𝐶𝑑  mod𝑛
For example, if 𝑀 = 65, encryption yields:

𝐶 = 6517mod3233 = 2790
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Decryption then computes:
𝑀 = 27902753mod3233 = 65

Elliptic Curve Cryptography (ECC)
The design of ECC relies on the mathematical properties that elliptic curves demonstrate in finite fields. An elliptic curve
exists over a prime field 𝔽𝑝 With definition:

𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏  mod𝑝
where 𝑎,𝑏∈𝔽𝑝 satisfy 4𝑎3 + 27𝑏2 ≠ 0. The cryptographic strength of ECC is based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP): Given points. 𝑃 and 𝑄 such that 𝑄 = 𝑘𝑃, finding 𝑘 Is computationally infeasible.
The group operation (point addition) is defined as:

𝑥3,𝑦3 = 𝑥1,𝑦1 + 𝑥2,𝑦2
Where:

𝑥3 = 𝜆2 − 𝑥1 − 𝑥2,  𝑦3 = 𝜆 𝑥1 − 𝑥3 − 𝑦1
and the slope 𝜆 Is given by:

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 mod𝑝,   if 𝑃 ≠ 𝑄

For point doubling (𝑃 = 𝑄) :

𝜆 =
3𝑥2

1 + 𝑎
2𝑦1

 mod𝑝

Example: Point Addition on an Elliptic Curve
Consider the elliptic curve:

𝑦2 = 𝑥3 + 2𝑥 + 3  mod97
Let 𝑃 = (3,6) and 𝑄 = (80,10). Compute 𝑃 + 𝑄.

Compute1 𝜆 :
𝜆 = 10 − 6

80 − 3  mod97 = 4
77  mod97

The calculation of 77−1mod97 results in 45 because modular division can be performed bymultiplication with the modular
inverse:

𝜆 = 4 × 45  mod97 = 180  mod97 = 83
Compute2 𝑥3 :

𝑥3 = 832 − 3 − 80  mod97 = (6889 − 3 − 80)  mod97 = 58
Compute3 𝑦3 :

𝑦3 = (83(3 − 58) − 6)  mod97 = (83 × − 55 − 6)mod97
(− 4565 − 6)  mod97 = 23

Thus, 𝑃 + 𝑄 = (58,23).

Advanced Encryption Standard (AES)
The encryption operations of AES occur within the Galois Field 𝐺𝐹 28  While performing arithmetic on bytes according
to finite field rules. AES encryption includes four fundamental processes as its core operations: SubBytes - A non-linear substitution occurs using an S-box which derives from the inverse calculation in 𝐺𝐹 28 .
 ShiftRows - Row-wise permutation of the state matrix. MixColumns - Matrix multiplication in 𝐺𝐹 28 :

𝐶0
𝐶1
𝐶2
𝐶3

=
01010302
01030201
03020101
02010103

𝑃0
𝑃1
𝑃2
𝑃3 AddRoundKey - XOR with the round key.

AES relies on algebraic complexity and diffusion properties to resist differential and linear cryptanalysis.
Example: Mix Columns Transformation
Consider a column of the AES state matrix before MixColumns:

0𝑥𝐷4
0𝑥𝐵𝐹
0𝑥5𝐷
0𝑥30

Using the MixColumns transformation matrix:
02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02
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Each new byte is computed using finite field multiplication in 𝐺𝐹 28 . Using the Rijndael Galois Field multiplication
rules:
Multiplication by 02 in 𝐺𝐹 28 This means shifting left and reducing modulo 0x11B.
Multiplication by 03 is equivalent to (𝑃 × 02) ⊕ 𝑃.
Performing the operations:

𝐶0 = (02 ⋅ 0𝑥𝐷4) ⊕ (03 ⋅ 0𝑥𝐵𝐹) ⊕ (01 ⋅ 0𝑥5𝐷) ⊕ (01 ⋅ 0𝑥30)
Converting to binary and applying GF  2∧8 Multiplication:

(0𝑥𝐵3) ⊕ (0𝑥6𝐸) ⊕ (0𝑥5𝐷) ⊕ (0𝑥30) = 0𝑥04
Similarly, computing for all other values:

𝐶1 = 0𝑥𝐸0,  𝐶2 = 0𝑥𝐵2,  𝐶3 = 0𝑥79
Thus, the transformed column after MixColumns is:

0𝑥04
0𝑥𝐸0
0𝑥𝐵2
0𝑥79

3. Post-Quantum Cryptography: Mathematical Framework
The potential emergence of quantum computers makes RSA and ECC vulnerable rendering them inadequate thus post-
quantum cryptography (PQC) studies computational problems resistant even to quantum attacks. The most effective
cryptography approaches consist of lattice-based, code-based, multivariate polynomial, and isogeny-based cryptography
methods.

Lattice-Based Cryptography
Security in Lattice-based cryptography depends on the difficulty of vector space problems in high-dimensional spaces.
Two fundamental problems ensure security: Shortest Vector Problem (SVP)
Given a lattice Λ generated by a basis 𝐵 = 𝑏1,𝑏2,…,𝑏𝑛 , the problem requires finding the shortest nonzero vector 𝑣∈Λ :

∥ 𝑣 ∥= min{∥ 𝑤 ∥ :𝑤∈Λ∖{0}}
SVP is NP-hard, making it secure against quantum attacks. Learning With Errors (LWE)
The LWE problem involves solving noisy linear equations. Given a secret vector 𝑠, random matrix 𝐴, and noise 𝑒 :

𝑏 = 𝐴𝑠 + 𝑒mod𝑞
Quantum attacks make it impossible to find a solution for s. LWE underpins homomorphic encryption and post-quantum
key exchange.

Code-Based Cryptography
The encryption method known as Code-based cryptography depends on the decoding difficulty of random linear codes:
McEliece Cryptosystem:
1 Select a generator matrix 𝐺 Of a Goppa code.
2 Encode plaintext 𝑚 as 𝑐 = 𝑚𝐺 + 𝑒, where 𝑒 Is an intentional error.
3 The private key allows efficient error correction, but without it, decoding is intractable.
McEliece demonstrates quantum resistance yet its key sizes grow substantially.

Multivariate Polynomial Cryptography
Multivariate cryptographic schemes function through the assumption that nonlinear systems over finite fields remain
unsolvable.
Hard Problem: Given a system of 𝑚 quadratic equations in 𝑛 variables over 𝔽𝑞 :

𝑃𝑖 𝑥1,𝑥2,…,𝑥𝑛 = 𝑐𝑖,  1 ≤ 𝑖 ≤ 𝑚
solving for 𝑥1,…,𝑥𝑛 Is NP-hard.
Examples: Unbalanced Oil and Vinegar (UOV): A signature protocol that implements "oil" variables for preventing algebraic

attack methods. Rainbow Signatures: UOV has received an optimized extension for efficient
authentication purposes.
Multivariate cryptography is quantum-resistant but requires large key sizes.

Isogeny-Based Cryptography
The security of isogeny-based cryptography depends on how challenging it is to determine structure-preserving maps
between elliptic curves.
Mathematical Definition: Given elliptic curves 𝐸1 and 𝐸2 over 𝔽𝑝, an isogeny 𝜙 Satisfies:

𝜙:𝐸1 → 𝐸2,  𝜙(𝑃 + 𝑄) = 𝜙(𝑃) + 𝜙(𝑄)
where 𝑃,𝑄 Are points on 𝐸1.



25Volume-11| Issue-04|Dec 2025

Security Basis: Supersingular Isogeny Diffie-Hellman (SIDH): The process of identifying ϕ solely from its public point operations
remains impossible for modern computers to solve. Quantum Resistance: Scientists have not discovered any efficient quantum algorithm capable of solving the SIDH
problem.

The implementation of Isogeny-based cryptography consumes high computational resources while maintaining low
bandwidth needs.

1. Statistical and Probabilistic Analysis of Cryptographic Security
Entropy and Information Theory in Cryptography
Entropy quantifies the unpredictability of cryptographic keys and randomness sources. The Shannon entropy of a discrete
random variable 𝑋 with probability distribution 𝑃(𝑋) Is given by:

𝐻(𝑋) =−
𝑥∈𝑋

 𝑃(𝑥)log2 𝑃(𝑥)

For a truly random 𝑛-bit key, the entropy is𝐻(𝑋) = 𝑛. Low entropy in cryptographic keys weakens security, making them
susceptible to brute-force and statistical attacks.
Min-entropy, defined as:

𝐻∞(𝑋) =− log2 max𝑃(𝑥)
The worst-case security analysis depends on this parameter, especially in randomness extractors and leakage-resilient
cryptography.

Provable Security: Reductionist Proofs and Hardness Assumptions
Reductionist Proofs: In cryptographic security, a problem 𝐴 is reducible to another problem 𝐵 (denoted as 𝐴 ≤ 𝐵 ) if
solving 𝐵 efficiently allows solving 𝐴. Thus, if 𝐵 is known to be hard, then 𝐴 Must also be hard.
Example: The security of RSA encryption is reduced to the Integer Factorization Problem (IFP): Given 𝑁 = 𝑝 ⋅ 𝑞, recovering (𝑝,𝑞) Is assumed to be computationally infeasible for large primes. If an attacker could efficiently break RSA, they could also factor 𝑁, violating the IFP hardness assumption.

Cryptographic Complexity Classes:
Cryptographic problems fall into well-defined complexity classes: P (Polynomial Time): Efficient problem-solving occurs for problems such as addition and multiplication. NP (Nondeterministic Polynomial Time): The verification of solutions for these problems is efficient but their

resolution requires exponential time (Integer Factorization and SVP fall into this category). NP-Hard: The problems belong to the same computational difficulty level as the most challenging problems in NP
complexity (including LWE and McEliece decoding). NP-Complete: Examples of problems that belong to both NP and NP-hard classes include 3-SAT (SAT with three
variables).

Example Reduction: LWE to GapSVP
In lattice-based cryptography, the security of LWE relies on a worst-case reduction to the Gap Shortest Vector Problem
(GapSVP). This means: An efficient average-case LWE solver would also enable the solution of GapSVP in the worst case. Because GapSVP belongs to the NP-hard complexity class LWE remains resistant to attacks from classical and quantum
computers.

Statistical Attack Models: Probability Distributions in Cryptanalysis
Cryptanalytic techniques exploit probability distributions of ciphertexts and keys. Differential Cryptanalysis: The research analyzes distribution patterns of input-output differences that occur in block
cipher systems. For a function 𝑓, the probability of a differential pair 𝑥,𝑥′ mapping to 𝑦,𝑦′ Is analyzed:

𝑃 𝑓(𝑥) ⊕ 𝑓 𝑥′ = 𝑦 ⊕ 𝑦′
 Linear Cryptanalysis: Uses linear approximations to predict key bits with high probability. Given plaintext 𝑃, ciphertext

𝐶, and key 𝐾, an approximation of the form:
𝑃𝑖 ⊕ 𝑃𝑗 ⊕ 𝐶𝑘 ≈ 𝐾𝑚

holds with probability 𝑝 ≠ 0.5, allowing key recovery. Side-Channel Attacks: The analysis of statistical execution pattern variations allows for the exploitation of power
consumption and timing differences.

CHALLENGES AND FUTURE DIRECTIONS
1. Computational Complexity vs. Efficiency Trade-offs
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The purpose of cryptographic algorithms is to make themselves resistant to attacks but maintain their operational capacity
for users. The process of striking this equilibrium proves to be difficult. The security provided by RSA depends on
extensive key sizes which generate slower encryption and decryption processes. The computational costs of lattice-based
cryptography become substantial because of its requirement for performing high-dimensional vector operations among
different elements. The practical usability of public-key cryptosystems depends heavily on optimization techniques that
focus on improving both lattice basis reduction methods and improved modular arithmetic since these optimize the
efficiency-security trade-offs.

2. Mathematical Advancements in Quantum-Resistant Cryptography
The development of quantum computing exposes RSA and ECC cryptographic methods to Shor’s algorithm because this
algorithm efficiently breaks integer factorization and discrete logarithm problems. Post-quantum cryptography (PQC)
develops new mathematical problems that appear intractable by quantum computers to overcome their computational
advantages. Lattice-based cryptography implements the Shortest Vector Problem (SVP) and Learning With Errors (LWE)
as its core problems because they possess proven worst-case mathematical difficulties. Multivariate polynomial
cryptography represents a PQC approach that makes its security rely on the computational complexity of solving
multivariate quadratic equations in finite fields. Growing interest exists around isogeny-based cryptography because this
method uses supersingular elliptic curve isogenies to find difficult cryptographic solutions but demands additional study
in mathematics. The development of cryptographic standards able to resist quantum attacks requires progress in these
specific areas.

3. Open Problems in Cryptographic Security Proofs
Formal security proofs establish mathematical proof of cryptographic schemes but multiple security questions still need
resolution. The main issue stems from reduction tightness because numerous cryptographic protocols use hard
mathematical problems through reductions yet their efficiency and validity demand additional research. Researchers need
to find new cryptographic hardness assumptions that quantum computers cannot break since number-theoretic
assumptions do not provide adequate security anymore. The extraction of random numbers requires strong statistical
proof to generate secure keys for cryptography and protect communication systems. Future research needs to enhance
security-proof development and strengthen post-quantum cryptographic foundations while resolving existing security
model limitations.

CONCLUSION
Data security along with confidentiality and integrity depends fundamentally on mathematical principles for cryptography
operations. The analysis of this paper focused on three essential cryptographic methods through mathematical examination
of number theory in RSA and elliptic curve algebra in ECC and finite field arithmetic in AES. The cryptographic
techniques that use lattice-based along with multivariate polynomial methods prove how sophisticated mathematical
constructs work against attackers using conventional and quantum-based methods. The development of stronger
encryption systems benefits from statistical and probabilistic models since they determine defense mechanisms against
cryptographic threats.
The continuing field of mathematical cryptography faces various research obstacles in its path to future growth. Research
into quantum-resistant cryptographic protocols needs improved investigation of geometric and algebraic structures. The
research of efficient systems alongside security protection stands as a vital investigation priority particularly when applied
to real cryptographic frameworks. Formal security authentication systems need improvement through upgraded
mathematical models to defend against future attack scenarios. Your prediction for secure communication methods
advances with interdisciplinary developments in number theory and algebra and probability and computational
mathematics and security now depends on computational complexity.
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