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Abstract:  
we have considered heat and mass transfer on the MHD free convection flow of second grade fluid through porous medium 

bounded by an infinite vertical porous rotating plate taking hall current into account. The analytical solutions for the 

governing equations are found by utilization of Laplace transformation methodology. The velocity, temperature and 

concentration is analysed graphically, and computational results for the skin friction, and Sherwood number are also 

obtained. 
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1. Introduction: 

The study of heat and mass transfer with chemical reaction is of great practical importance to engineers and scientists 

because of its almost universal occurrence in many branches of science and engineering. In particular, the study of 

chemical reaction, heat and mass transfer with heat radiation is of considerable importance in chemical and 

hydrometallurgical industries. A reaction is said to be first-order if the rate of reaction is directly proportional to the 

concentration itself. In many chemical processes, a chemical reaction occurs between a foreign mass and a fluid in which 

a plate is moving. These processes take place in numerous industrial applications, e.g., polymer production, manufacturing 

of ceramics or glassware, and food processing Cussler [1]. Chambre and Young [2] analyzed the diffusion of chemically 

reactive species in a laminar boundary layer flow. 

Many researchers have studied MHD free convective heat and mass transfer flow in a porous medium; some of them are 

Raptis and Kafoussias[3] , Sattar[4]  and Kim[5] . Jaiswal and Soundalgekar[6]  obtained an approximate solution to the 

problem of an unsteady flow past an infinite vertical plate with constant suction and embedded in a porous medium with 

oscillating plate temperature[7-9]. The unsteady flow through a highly porous medium in the presence of radiation was 

studied by Raptis and Perdikis [10]. Sakiadis [11] investigated the effect of transverse periodic permeability oscillating 

with time on the heat transfer flow of a viscous incompressible fluid through a highly porous medium bounded by an 

infinite vertical porous plate, by means of series solution method. 

The second graded fluid preserve many fluids these are diluted polymer solution, slurry flow, as well as industrial oil, in 

addition to a lot of flow problems by a choice of ge- ometry as well as dissimilar mechanical and/or thermal boundary cir- 

cumstances have been deliberated. Tan and Masuoka [12] found the Stokes first problems for the second graded fluids 

and Rashidi et al. [13] discussed by the unsteady compressible flows of the second order fluids. Hayat et al. [14] explored 

by the unsteady stagnation point flow of second grade fluids with changeable free stream.The magnetohydrodynamic 

(MHD) is a subdivision of fluid dynamics and this studied the association of the electrically conducting fluids in the 

magnetic field. Many of investigative efforts in the MHD has been proceed extensively for the duration of the preceding 

little decades subsequent to the established work of Hartmann [15] in fluid metalized ducts flow under external magnetic 

field. There are most applications for the parabolic movement for instance solar cooker, solar concentrator and parabolic 

through stellar collector. The parabolic concentrator model solar cookers have the wide range of applications for example 

baking, roast as well as distillations. Solar concentrator model had those applications into growing rates of evaporations 

in dissipate stream, in food dispensations, for producing consumption water from salt water as well as seawater. Murthy 

et al. [16] discussed by the evaluations of thermal performances of temperature exchangers units for parabolic 

Motivated by the  current study set out to examine the effects of heat sources and chemical reactions in a rotating system 

while accounting for hall current on the unsteady MHD free convection flow of an incompressible electrically conducting 

second grade fluid through a porous medium enclosed by an infinite vertical porous surface. 

 

2. Formulation of the problem 

We consider the unsteady MHD free convection flow of an electrically conducting viscous incompressible second grade 

fluid bounded by a vertical porous surface in a rotating system in the presence of heat source and chemical reaction 

subjected to a uniform transverse magnetic field of strength B0 normal to plate and taking hall current into account. The 

temperature on the surface varies with the time about a non-zero constant mean while the temperature of free stream is 

taken to be constant. We consider that the vertical infinite porous plate rotates with the constant angular velocity about an 

axis is perpendicular to the vertical plane surface. 

We choose a Cartesian co-ordinate system ),,( zyxO
 such that x, y axes respectively are in the vertical upward and 

perpendicular directions on the plane of the vertical porous surface 0=z , while z-axis normal to it. The interaction of 

Coriolis force with the free convection sets up a secondary flow in addition to primary flow and hence the flow becomes 

three dimensional. With the above frame of reference and assumptions, all the physical variables are functions of z and t 

alone.  In the equation of motion, along x-direction the x-component current density y0 JB
and the x-component current 

density xJB0−
. 

The constitutive equation for the stress T in an incompressible fluid of second grade is given by 

1 1 2 2 1( )T t pI A A A  = − + + +
   (2.1) 

Where,   is the dynamic viscosity 1 , 2
 are the normal stress moduli and the kinematical tensors 

( ) ( )1 ,
T

A gradV gradV= + ( ) ( )1
2 1 1

TDA
A A gradV gradV A

Dt
= + +

 (2.2) 

Where, V is the velocity, grad the gradient operator and D/Dt the material time derivative. 

The unsteady hydro magnetic flow in a rotating co-ordinate system is governed by the equation of motion, continuity 

equation and the Maxwell equations in the form. 
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0. = B    (2.5) 
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Where, J is the current density, B is the total magnetic field, E is the total electric field, m   is the magnetic permeability 

and r is radial co-ordinate given by
222 yxr += . When the strength of the magnetic field is very large, the generalized 

ohm’s law is modified to include the hall current so that 
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Where e
 is the cyclotron frequency of the electrons, e  is the electron collision time,   is the electrical conductivity, 

e  is the electron charge and Pe is the electron pressure. The ion-slip and thermo electric effects are not included in equation 

(2.8). Further it is assumed that ee
 ~ 0 (1) and 

,1ii where i and i  are the cyclotron frequency and collision 

time for ions respectively. The unsteady hydro magnetic flow in a rotating system is governed by the equation of motion 

for momentum, the conservation of mass, energy and the equation of mass transfer, under usual Boussinesq 

approximation, are given by 
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where, ),( vu   is the velocity components along x and y directions, T is the temperature of the fluid, C is the species 

concentration, 1
  is the normal stress modulus,   is the density of the fluid,    is the electrical conductivity of the 

fluid, 1
K  is the permeability of the porous medium, 0

B
 is the uniform magnetic field of strength,   is the coefficient of 

kinematic viscosity, k  is the thermal conductivity of the fluid, p
C

 is the specific heat of the fluid at constant pressure, 

  is the volumetric coefficient of the thermal expansion, 
  is the volumetric coefficient of the thermal expansion with 

concentration,  g  is the acceleration due to gravity, D is the thermal diffusivity of the fluid, 1
S  is the heat source/sink 

parameter and CK
 is the chemical reaction parameter. 

In equation   (2.8) the electron pressure gradient,    the   ion-slip   and   thermo-electric effects are neglected.  We also 

assume that the electric field   E=0 under assumptions reduces to 

x y 0J m J σB v+ =
   (2.15) 

y x 0J m J σB u− =−
   (2.16) 

Where em  e=
 is the hall parameter. 

On solving equations (2.15) and (2.16) we obtain 
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Using the equations (2.17) and (2.18), the equations of motion with reference to a rotating frame are given by 
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The corresponding boundary conditions are 

0, ( ) , ( )i t i t

w w w wu v T T T T e C C C C e   = = = + − = + −
  at  0z =  (2.21) 

0, ,u v T T C C = = = =
   at  =z  (2.22) 

Where 1  and   is the frequency of oscillation. There will be always some fluctuation in the temperature, the plate 

temperature is assumed to vary harmonically with time. It varies from 
( )w wT T T  −

as t  varies from 0  to / 2 
. Now there may also occur some variation in suction at the plate due to the variation of the temperature, here we assume 

that, the frequency of suction and temperature variation are same. 

Integrating the equation (2.9), we get 
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   (2.23) 

Where A  is the suction parameter, 0
w

 is the constant suction velocity and   is the small positive number such that 

.1A  The equation (2.12) determines the pressure distribution along the axis of rotation and the absence of y

p
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 in the 

equation (2.11) implies that there is a net cross flow in the −y direction. We choose, ivuq +=  and taking into 

consideration (2.23), the momentum equation (2.19) and (2.20) can be written as 
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Introducing the following non-dimensional quantities: 
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Making use of non-dimensional quantities (dropping asterisks), the equation (2.24), (2.13) and (2.14) can be written as 
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 chemical reaction parameter, em  e=
 is the hall parameter and D
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Schmidt number. 

Equating the harmonic and non-harmonic terms, we get 
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The corresponding boundary conditions 
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Hence the expression for the transient velocity profiles for 

2/ =t   are given by 
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3.Skin friction: 

The non-dimensional skin friction at the plate 0=z  in term of amplitude and phase angle is given by 
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The xz
 and yz

 components of skin friction at the plate are given by 
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4.Rate of heat transfer (Nusselt number): 

The rate of heat transfer co-efficient at the plate 0=z
 in term of amplitude and phase angle is given by 
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5.Rate of mass transfer (Sherwood number): 

The rate of mass transfer co-efficient at the plate 0=z
 in term of amplitude and phase angle is given by 
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6.Analysis of the numerical results. 

The closed form solutions for the velocity ivuq += , temperature   and concentration C  are obtained making use of 

perturbation technique. The velocity expression consists of steady state and oscillatory state. It reveals that, the steady part 

of the velocity field has three layer characters while the oscillatory part of the fluid field exhibits a multi layer character.It 

is noticed that, from the Figures 1(a-h) the magnitude of the velocity u reduces with increasing the intensity of the magnetic 

field (Hartmann number M) while it enhances with increasing second grade fluid parameter   or permeability of porous 

medium K or hall parameter m throughout the fluid region. The magnitude of the velocity component v enhances with 

increasing M or second grade fluid parameter   or permeability of porous medium K or hall parameter m. The application 

of the transverse magnetic field plays the important role of a resistive type force (Lorentz force) similar to drag force (that 

acts in the opposite direction of the fluid motion) which tends to resist the flow thereby reducing its velocity. The resultant 

velocity q  enhances with increasing , K and m; and reduces with increasing M. We observe that lower the permeability 

of porous medium lesser the fluid speed in the entire fluid region. Further, it is to observed that from Figures 2 (a-h) the 

velocity u reduces and v enhances with increasing Schmidt number Sc, first the velocity u increases and then experiences 

retardation where as v reduces in the entire fluid region with increasing chemical reaction parameter Kc. With increasing 

Prandtl number Pr the velocity u reduces and v enhances in the complete flow field. This implies that an  increase in 

Prandtl number Pr leads to fall the thermal boundary layer flow. This is because fluids with large have low thermal 

diffusivity which causes low heat penetration resulting in reduced thermal boundary layer. Likewise the velocity u 

enhances and v decreases with increasing the frequency of oscillation   and time t. The resultant velocity reduces with 

increasing Kc or Sc and increases with increasing Pr and time t. 

This is scrutinized from Table .1 that, it is notified that, for together ramped wall temperature and isothermal plate, the 

stress components τx as well as τy enhances by an increasing in second graded fluid parameter α, chemical reacting 

parameter Kr, temperature generations and/or absorptions H and thermal radiation parameter R, as well as it reduces by 

an increasing in the permeability parameter K, thermal-diffusion (Soret) parameters Sr, thermal Grashof numbers Gr and 

mass Grashof quantity Gm. This is also found that by an increasing in the intensity of the magnetic fields then the stress 

components τx retards and the component τy boosting up for together ramped wall and isothermal plate. Finally, the 

Sherwood number Sh is reduced with an increasing in the Soret number Sr as well as Schmidt number, and it is increasing 

with an increasing in chemically reacting parameter Kr and certain instant of time for together ramped wall temperature 

and an isothermal plate (Table .2). 

 

Fig. 1.  The velocity profiles for the components u and v  for M,  , K and m  with 05.0=A ; 2/5 = ; 001.0= , 

2.0=t  
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Fig. 2.  The velocity profiles for the components u and v  for Sc, Kc, Pr and t with 05.0=A ; 2/5 = ; 001.0= , 

2.0=t  
 

Table.1 The Shear stresses 

M K α Kr Sr Gr Gm H R Ramped Temperature Isothermal Plate 

0.5 0.5 0.1 2 0.1 5 2 2 2 
x  y  x  y  

0.8         1.836214 0.047785 1.899789 0.97589 

1         1.417058 0.058898 1.610469 1.005547 

 1        1.073592 0.065578 1.380014 1.109554 

 1.5        1.738796 0.025478 1.724635 0.909969 

  1       1.509478 0.014502 1.579789 0.798559 

  1.5       2.406466 0.058895 2.013966 1.108748 

   3      3.539896 0.085547 2.155254 1.286589 

   4      2.139895 0.055874 2.253801 1.175478 

    0.5     2.772747 0.087748 3.240479 1.575041 
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Table.2 The Sherwood number(Pr=0.710,R=2.0,H=-2.0) 

Sr Kr Sc t Ramped Temperature Isothermal Temperature 

0.1 2 0.22 0.2 0.563478 0.647278 

0.5    0.480254 0.564054 

1    0.425854 0.509654 

 3   0.625785 0.709585 

 4   0.703699 0.787499 

  0.3  0.536895 0.620695 

  0.6  0.503548 0.587348 

   0.5 0.633897 0.717697 
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    1     1.743745 0.021411 1.350884 0.656952 

     8    1.553985 0.014115 0.605856 0.416658 

     10    1.73611 0.025041 1.877147 0.944587 

      5   1.507522 0.018874 1.855145 0.918847 

      8   1.780547 0.036306 1.887265 0.967895 

       -5  1.673954 0.021447 1.876458 0.944014 

       5  1.743665 0.032256 1.840595 0.878748 

        5 2.13965 0.058874 2.024854 1.078849 

        8 1.909452 0.055289 2.013859 1.175954 




